Programming Plagiarism and Collusion: Student
Perceptions and Mitigating Strategies in Indonesia

Oscar Karnalim
Faculty of Information Technology
Maranatha Christian University
Indonesia
oscar.karnalim@it.maranatha.edu

Yogi Udjaja
Computer Science Department
School of Computer Science
Bina Nusantara University
Indonesia
yogi.udjaja@binus.ac.id

Abstract— Many strategies have been proposed to mitigate
programming plagiarism and collusion. However, the
effectiveness can vary across learning environments due to
different cultural and/or geographical backgrounds. A few
specific studies have been conducted to provide a better picture
about the matter in particular countries, but none of them focus
on a developing country. This paper proposes a country-specific
study for Indonesia, a developing country. Specifically, it
summarizes student perceptions of programming plagiarism
and collusion on 345 students from 16 universities. This paper
also presents a list of strategies for mitigating programming
plagiarism and collusion in six universities. Finally, it highlights
remaining issues and recommends some practical solutions.

Keywords—academic integrity, programming, questionnaire
survey, instructor experience, computing education

I. INTRODUCTION

In academia, computing students are sometimes unable to
complete a programming assessment due to various reasons
[1] such as poor time management and lack of appropriate
resources. When the students are unable to get sufficient help,
they might become desperate and decide to cheat [2], [3].
Typically, they would reuse another student’s work. If the act
is allowed by the student of the copied work, it is called
programming collusion [4]. Otherwise, it is programming
plagiarism.

To mitigate programming plagiarism and collusion,
students should have neither opportunity, rationalization, nor
pressure to cheat [5]. Opportunity can be reduced by
introducing a similarity detection tool like JPlag [6] or
STRANGE [7]. Rationalization can be dealt by properly
informing students about the instructors’ expectation of
academic integrity in their courses [8]. Pressure can be
mitigated by offering many small assessments instead of a few
large ones [9].

Before applying any mitigating strategies, it is important
to understand student perceptions about programming
plagiarism and collusion, what strategies that have been
applied, and what are the remaining issues. These can vary
across learning environments, especially if they come from
different cultural and/or geographical background [10].

A few relevant studies have been conducted to provide a
better picture of such phenomena in particular countries.
However, they are focused on developed countries (UK [11],
China [12], Slovenia [13], and Cyprus [10]). None of them
address developing countries, Indonesia in particular. A few
studies have focused on the country, but they are about text

978-1-6654-3687-8/21/$31.00 ©2021 IEEE

Irwan Alnarus Kautsar
Faculty of Science and Technology
Universitas Muhammadiyah Sidoarjo
Indonesia
irwan@umsida.ac.id

Matahari Bhakti Nendya
Faculty of Information Technology
Duta Wacana Christian University

Indonesia
didanendya@ti.ukdw.ac.id

Bayu Rima Aditya
School of Applied Science
Telkom University
Indonesia
bayu@tass.telkomuniversity.ac.id

I Nyoman Darma Kotama
Post Graduate Electrical Engineering
Udayana University
Indonesia
kotama@student.unud.ac.id

plagiarism. Two of them are a study reviewing general
policies [14] and a study about the use of bibliographic
management software [15].

In response to the aforementioned gap, this study has three
contributions. First, we report student perceptions about
programming plagiarism and collusion in Indonesia. The
perceptions were collected via a questionnaire survey,
responded by 345 computing undergraduates from 16
Indonesian universities. Second, we summarize some
strategies that have been applied in Indonesia to mitigate
programming plagiarism and collusion. It is based on the
authors’ experiences as instructors at six different universities
and shared stories from the authors’ colleagues about their
strategies. Third, based on the first two contributions, we list
any remaining issues and suggest some recommendations.

To the best of our knowledge, this is the first study of its
type. The study is expected to foster research about
programming plagiarism and collusion in Indonesia by
summarizing student perceptions and mitigating strategies.
Although it is dedicated to a particular country, it might still
be relevant and useful for other developing countries,
especially those in Asia.

II. RELATED WORK

Students do plagiarism or collusion since they have the
opportunity to do so, they are not able to deal with some
pressure, and they can justify their acts via misleading
rationalization [5]. In dealing with plagiarism and collusion,
at least one of those reasons should not be applicable.

Many studies are focused on reducing the opportunity to
cheat. Typical approaches are introducing additional
confirmation of the authorship of the work [16], issuing
personalized assessments [17], and using a similarity
detection tool [18].

Some studies are focused on educating students about
programming plagiarism and collusion so that they cannot
justify the misbehavior. The instructors are in charge of
informing the students about that matter [8]. A few tools have
been developed to partly support the process such as an
educational mobile application [19] and a Moodle plug-in
showing the futility of doing academic misconduct [20].

To mitigate the pressure, it is important to ensure that
students are not overwhelmed by the assessments. Issuing
smaller assessments [9] or allowing the students to work in
pairs [21] are two examples of it.

In addition to studies about the mitigating strategies, a
number of supporting studies have been conducted. They aim
to understand the phenomena of programming plagiarism and
collusion in a particular learning environment, summarizing
successful ~ strategies, and/or providing practical
recommendations. Most of the studies are general such as in
[4],[22], and [23]. While these studies are still crucial to foster
research in programming plagiarism and collusion, it is
important to conduct some country-specific studies given that
each country has its own regulations, culture, and
geographical background.

We are aware of six country-specific studies, covering
four countries. These studies capture general perceptions of
students, instructors, and industrial employees regarding
programming plagiarism and collusion via questionnaire
surveys.

The UK is covered in two studies; one of them focuses on
student perspective [11] while another focuses on instructor
perspective [24]. The former found that both reusing program
from previous assessments and translating program to another
language without acknowledgment are wrongly considered as
acceptable practices by students. The latter found that there is
a grey area about reusing programs as it is encouraged in
object-oriented paradigm, a common programming paradigm.

China is also covered in two studies. The first study [12]
focuses on students, instructors, and industrial employees.
They found that standardized policies about how to treat
plagiarism and collusion cases are needed. The second study
[25] focuses only on students. Some students were unsure that
collusion and reusing code from textbook without
acknowledgment are not acceptable.

Slovenia and Cyprus are covered in one study each. The
Slovenian study [13] shows that about three fourths of the
respondents had been involved in programming plagiarism
and collusion at least once. Further, most of the disguises are
about identifier renaming. The Cypriot study [10] found that
students were not used to acknowledge reused code and they
were not aware about self-plagiarism.

III. METHOD

The study summarizes Indonesian student perceptions of
programming plagiarism and collusion. It also lists applied
strategies to mitigate programming plagiarism and collusion
in Indonesia. Last but not least, it identifies any remaining
issues and provides some practical recommendations.

Student perceptions of programming plagiarism and
collusion were collected via a questionnaire survey,
containing eleven questions from an evaluation instrument of
[26]. The questions are originally from [27] but slightly
modified to specifically cover plagiarism and collusion. Each
question asked student agreement whether a particular
scenario is not acceptable since it is considered as
programming plagiarism or collusion. All questions should be
responded with either “this is an acceptable practice”, “this is
NOT an acceptable practice”, or “do not know”. The questions
and their expected responses can be seen in Table 1. It is worth
noting that the expected responses are defined by the authors
based on their teaching experiences; the correct answers to
these questions are not universal and they depend on local
policies.

For deeper analysis, the survey also asks the students to
provide information about their university and their

enrollment year. The former lets the student to choose one of
seven options. The first six are the universities of the authors
while the last one is open-ended where the students can freely
write the name of other universities if not listed. The latter lets
the students to choose one of four options: year one, year two,
year three, and year four or higher. The survey is fully
anonymized; we do not ask their personal details like name,
gender, and email. Further, we do not provide any incentives
for those who fill the survey.

TABLE L. SURVEY QUESTIONS [26] ADAPTED FROM [27]
. Expected

ID Question Answer

QO01 | Purchasing code written by others to Unacceptable
incorporate into one’s own work

Q02 | Paying another person to write the code Unacceptable
and submitting it as one’s own work

Q03 | Basing an assessment largely on work Unacceptable
that one wrote and submitted for a
previous course, without acknowledging
this

Q04 | Incorporating the work of another Unacceptable
student without their permission

Q05 | Borrowing another student's code and Unacceptable
changing it so that it looks quite
different

Q06 | Borrowing an early draft of another Unacceptable
student's work and developing it into
your own

Q07 | Discussing with another student how to Acceptable
approach a task and what resources to
use, then developing the solution
independently

Q08 | Discussing the detail of one’s code with Acceptable
another student while working on it

Q09 | Showing troublesome code to another Acceptable
student and asking them for advice on
how to fix it

Q10 | Asking another student to take Unacceptable
troublesome code and get it working

Q11 | Completing an assessment and then Acceptable
adding features that one noticed when
looking at another student's work

The survey was mainly distributed to students in six
universities of the authors. To gain broader perspective, we
also asked our students to re-distribute the survey to their
colleagues from other universities. Further, we informally
contacted some students from other universities as well.

The responses were analyzed by summarizing the
proportion of correct responses, counting how many correct
responses per question, and observing possible reasons behind
each phenomenon. We also checked whether student
perceptions of programming plagiarism and collusion are not
affected by their universities and their enrollment years via
one way ANOVA with 95% confidence rate. If the
perceptions are not affected by those two factors, it is more
likely that our findings are generalizable across Indonesian
universities regardless of enrollment years.

Strategies to mitigate programming plagiarism and
collusion in Indonesia were qualitatively summarized mainly
based on the authors’ experiences as instructors at six different
universities. Some shared stories from the authors’ colleagues
about their strategies are also included. For convenience, the
strategies would be mapped based on three reasons to cheat:
opportunity, rationalization, and pressure [5].

Based on the student perceptions and the mitigating
strategies, remaining issues were identified, and some
possible recommendations are listed.

IV. STUDENT PERCEPTIONS OF PROGRAMMING PLAGIARISM
AND COLLUSION

Student perceptions was collected via a questionnaire
survey, and it was responded by 345 undergraduate students
from 16 Indonesian universities. Fig. 1 depicts that in most
scenarios, only a small portion of the responses show
uncertainty (i.e., responded with “do not know”). Students are
somewhat familiar with the scenarios and feel the relevancy.
Among the scenarios, Q09 has the largest portion of
“acceptable” responses while Q04 has the largest portion of
“unacceptable” responses.

Do not know

m Acceptable ®Unacceptable

350

300

» 250
[0

2 200
8

2150
(0]

@ 100

5

0

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11
Questions

o

Fig. 1.Student responses distribution regarding the survey of programming
plagiarism and collusion

On average, students were able to correctly answer 7 of 11
questions (67% correct response rate). It can be stated that
Indonesian students are quite knowledgeable in this matter.
However, the score does not necessarily represent
unmotivated students since the survey was entirely voluntary
and they were unlikely to take part in that.

Table II shows the questions sorted based on their
proportion of correct responses. Q04 is correctly answered by
most respondents (92%). It is about incorporating another
student's work without their permission. Students are aware
that asking permission is deemed appropriate before
"borrowing" a particular work. Based on the authors'
experiences as instructors, the permission is asked even for
illegitimate collaboration so that if they are suspected of
academic dishonesty, the colleague will help the student in
mitigating the penalty.

TABLE II SURVEY QUESTIONS SORTED BASED ON PROPORTION OF
CORRECT RESPONSES
1D Correct Responses
Q04 92%
Q09 88%
Q07 88%
Q02 81%
Qo1 76%
Q08 70%
Qll 68%
Q05 56%
Q03 46%
Q06 42%
Q10 34%

While incorporating another student's work, the student
should also ensure that the assessment allows some
collaboration and mention the collaboration either in the
program (as a comment) or in the documentation. Guideline
for citing external resources in a program can be seen in [8].

Q07 and Q09 are two other scenarios that are correctly
answered by most respondents (88% for both). Q07 is about
discussing with another student how to approach a task and
what resources to use, then developing the solution
independently. Q09 is about showing troublesome program to
another student and asking them for advice on how to fix it.
Both are considered as acceptable practices since all of the
programs are still written individually and sharing the idea or
getting advice is acceptable unless mentioned otherwise. They
are common practices among Indonesian students.

Q02 is correctly answered by 81% respondents, followed
by Q01 with 76% respondents. Q02 is about paying another
student to complete the student's work while Q01 is about
purchasing another student's work and incorporating it to the
student's work. Both scenarios seldom occur in Indonesia;
students are reluctant to allocate some amount of money to
complete their work. Further, they are still able to get the
copied program without paying any fees as their colleagues
sometimes are willing to illegitimately help them. Given the
involvement of money, students are aware that these are
academic misconduct and can be easily distinguished from
legal collaboration.

QO08, which is about discussing the detail of the program
with another student while working on it, is only correctly
answered by 70% of the respondents. The scenario is
somehow similar to Q07 except that the shared information is
more detailed. Again, students perceive it as acceptable
practice given that all of the programs are still written
individually. Further, sharing idea for solving a task is
acceptable since the implementation might be different. In
Indonesia, this is quite common during lab sessions where
students complete a particular assessment together in one
place.

Q11, which is about adding features noticed when looking
at another student’s work, is a scenario with the proportion of
correct answers comparable with that of QO08, two percent
lower to be precise. It is an acceptable practice since knowing
a particular feature does not necessarily entail an ability to
implement it. The student still needs to think about how to
translate the feature to code and thus how to incorporate the
code in their own work. This kind of act is more likely to occur
on large assessments (like final projects) where students are
somewhat free to choose features for their own programs.

QOS5 is correctly responded by half of the respondents
(56%). It is about copying another student's work and
changing it so that it looks different. Typically, this scenario
happens after the student has got permission from the author
ofthe copied program (Q04). Although students are aware that
copying another student's work is academic misconduct, the
proportion of correct responses is not too high. Some students
believe that changing the program is a complex task, justifying
their ownership of the changed program. Further, they are not
aware that program similarity is often measured at semantic
level, ignoring superficial variation like changing comments
and variable names. This is quite different with text similarity,
where paraphrasing can somehow reduce the degree of
similarity.

The remaining scenarios result in less than half of correct
responses and thus are in need to be explicitly informed to
students. Q03 is about basing an assessment largely on a work
that has been previously submitted for a previous course
without acknowledging this. Some students think that the
scenario is acceptable given that the reused work is their own
and they do not harm anyone. Other students accurately
perceive it as illegal since the work is used to complete more
than one assessment. Without acknowledgment of reuse, the
work will be valued as it is written solely for the assessment
and that can be unfair for students who do actually write their
work only for that purpose. The act is often called self-
plagiarism in academia and proper acknowledgment of reuse
can be written either in the program or the documentation.

In Indonesia, the scenario is quite common on advanced
courses where the assessments are somewhat expanded from
those of earlier courses. The reuse can also happen across
assessments in a particular course if that course has repetitive
topics (e.g., data structure course).

Q06 is about copying an early draft of another student's
work and developing it into their own. Some students believe
that this is not an academic misconduct since the students still
need to put a lot of effort to complete the work prior to
submission. However, the issue actually lies on the use of that
early draft, not the student's contribution to the work. It should
be at least properly acknowledged. In Indonesia, the copied
early draft is often obtained from smart and/or motivated
students as they are likely to progress faster than others in
completing the assessment.

Q10 is about asking another student to take troublesome
program and get it working. This is a variation of Q09 except
that the student is not in charge of fixing the errors. Two thirds
of students misinterpret the scenario as legal collaboration
since the program is still mainly written by the student and the
scenario seldom changes the program substantially.
Moreover, in Indonesia, similar help is sometimes provided
by the instructors for students who desperately needs it during
computer lab sessions. Regardless, the scenario is only
acceptable if the help is accessible for all students or it is
acknowledged in the program or the documentation. This is
for fairness purpose as some students might write their
programs without any help from their colleagues.

As shown in Table III, proportion of correct responses is
not much affected by enrollment year. One way ANOVA with
95% confidence rate shows that there are no statistically
significant differences among the groups (p-value = 0.15).
Hence, it can be stated that student perceptions are not affected
by enrollment year.

TABLE III. PROPORTION OF CORRECT RESPONSES PER ENROLLMENT
YEAR
Enrollment Year Correct Responses
Year one 68%
Year two 68%
Year three 66%
Year four or higher 62%

Table IV depicts proportion of correct responses across
authors’ universities (but anonymized as our main goal is not
to compare universities). There are no statistically significant
differences among the groups according to one way ANOVA
with 95% confidence rate (p-value = 0.08). Similar to the
enrollment year, student’s university does not also affect their

perceptions of programming plagiarism and collusion. In
other words, it can be stated that our findings reported here are
more likely to be generalizable across enrollment years and
Indonesian universities.

TABLE IV. PROPORTION OF CORRECT RESPONSES PER AUTHOR
UNIVERSITY
University ID Correct Responses
Ul 70%
U2 68%
U3 68%
U4 66%
us 65%
U6 63%

V. STRATEGIES TO MITIGATE PROGRAMMING PLAGIARISM
AND COLLUSION

This section summarizes strategies to mitigate
programming plagiarism and collusion in Indonesia based on
the authors’ experiences as instructors and their colleagues’
shared stories.

Many of the strategies are focused on reducing the
opportunity to do programming plagiarism and collusion. The
most common strategy is to require students to complete the
assessment while being monitored by the instructors in a
physical classroom (applicable prior to the pandemic).
Sometimes, the students are not allowed to connect to the
internet, use their data drive, discuss the assessment with other
students, and/or choose their seating position. In some
universities, students’ screens are also monitored via an
application like NetSupport.

Another common strategy is to make unique assessments
per course offering. Some students are close with their seniors
and if the assessments are the same as earlier offerings, they
can reuse their seniors’ solutions. Given that developing new
assessments are labor intensive and time consuming, some
instructors modify existing assessments and/or ask students to
freely choose their own case studies.

To confirm the authorship of the work, some instructors
apply a post-submission test about the program. Students
should be able to explain the program otherwise their marks
will be deducted. The test can be designed as an interview, an
oral presentation, or a written test. On some occasions, the test
is only issued for some students, selected at random or based
on their likeliness to cheat.

Many instructors manually check for similar programs and
if the similarity is a result of programming plagiarism and
collusion, the students will be penalized. A few instructors use
a code similarity detection tool [7], [28] to expedite the
process [18]. Instructors are only required to check programs
filtered by the similarity detection tool.

To prevent students rationalizing programming plagiarism
and collusion, Indonesian instructors inform the students
about the matter and elaborate what kinds of penalties that
they would get if caught. Typically, it is delivered verbally at
the beginning of the course. Despite its simplicity, it is
relatively effective if combined with other strategies.

To mitigate pressure to do plagiarism and collusion, some
courses adapt “many small programs approach” [9] where a
number of small assessments are issued in replacement of a
few large ones. Students are less likely to be overwhelmed by
the assessments. Another strategy is to let students complete

the assessments in pairs or groups, which is particularly
helpful for slow-paced students [21].

Some instructors allow late submissions to deal with time
pressure. Students who cannot complete the assessment in
time are still able to get some marks. A few instructors
encourage students who have completed their assessment
early to help other students. However, this is only applicable
on a monitored lab session since otherwise, it can result in
illegitimate collaboration.

VI. ISSUES AND RECOMMENDATIONS

According to student perceptions of programming
plagiarism and collusion, students are not particularly aware
about three unacceptable practices: basing an assessment
largely on a work that has been previously submitted for a
previous course without proper acknowledgment (Q03);
copying an early draft of another student's work and
developing it into their own (Q06); and asking another student
to take troublesome program and get it working (Q10).

Apart from explicitly informing students that those
scenarios are unacceptable, there is a need to introduce a way
to acknowledge that some parts of the code are from external
resources, like the one proposed in [8].

Regarding current strategies to mitigate programming
plagiarism and collusion, a few of them have some limitations
and can be improved.

In terms of reducing the opportunity to cheat, current ways
of monitoring students in completing their assessments are
less applicable to online learning (which became much
common during the pandemic) since that kind of learning
involves no physical meetings. We are aware that instructors
can require the students to always open their camera during
the meeting and/or install a monitoring application. However,
these are not really effective as Indonesian internet connection
is quite slow and we cannot monitor the whole activities (e.g.,
students might do something outside the camera view).
Instructors are expected to focus more on developing unique
assessments and/or applying post-submission tests. Both are
relatively effective, and they do not rely on physical meetings.

Manual check for similar programs is another strategy
with drawbacks. It is both labor intensive and time consuming.
More instructors should use a code similarity detection tool.
JPlag [6], MOSS [29], and Sherlock [30] are three commonly
mentioned similarity detection tools [31] and they can be
alternatives for use. MOSS is less preferred for Indonesian
universities as it requires student programs to be uploaded to
the server in the US while Indonesian internet connection is
quite slow. JPlag and Sherlock do the comparison without
internet connection and might be more preferred. JPlag offers
more interactive similarity reports whereas some modes in
Sherlock can focus on shallower level of similarity.

In case instructors need more comprehensive explanation
regarding the reported similarity, they can use STRANGE [7],
a dedicated similarity detection tool for that matter with both
English and Indonesian as the languages of explanation. A
recent study [18] shows that STRANGE is more effective on
assessments that are not open to many semantically distinct
solutions, like the ones that are typically offered in courses
with “many small programs” approach [9] (issuing many
small assessments instead of a few large ones).

Although “many small programs” approach reduces
pressure to cheat, it has a drawback. Given that each
assessment only contributes a little to the final grade, some
students might think that it is okay to cheat, especially if the
penalty is not severe (e.g., getting the assessment score
reduced). It is important to only give students a few chances.
For example, if they are caught cheating twice, they would get
zero as the final grade.

Last but not least, informing students about programming
plagiarism and collusion should be featured with a written
document summarizing the matter. If the information is only
given verbally, students might forget or mis-remember the
information. The document should also include some
examples and explain how to cite external code.

VII. CONCLUSION AND FUTURE WORK

This paper summarizes student perceptions of
programming plagiarism and collusion in Indonesia. It also
lists strategies for mitigating programming plagiarism and
collusion. Based on these two, it observes any remaining
issues and provide practical recommendations.

In general, students are aware of programming plagiarism
and collusion except those that involve self-plagiarism,
copying early draft of the work, and asking someone to fix the
code. Many strategies have been proposed including
monitoring student behavior, informing students about
programming plagiarism and collusion, and implementing
“many small programs” approach. In response to the findings,
it is recommended to introduce a way to cite external code,
encourage instructors to use a similarity detection tool, apply
severe penalty while implementing “many small programs”
approach, and develop a written document informing students
about programming plagiarism and collusion.

For future work, we plan to reconduct this study on
postgraduate students to observe the consistency of our
findings on higher university degrees. We are also interested
in performing a comprehensive study comparing our findings
with those of similar studies in different countries. It is
expected to provide a brief picture of learning environments
regarding programming plagiarism and collusion.

REFERENCES

[1] J. Sheard, A. Carbone, and M. Dick, “Determination of factors which
impact on IT students’ propensity to cheat,” in Fifth Australasian
conference on Computing education, 2003, pp. 119-126.

[2] A. Hellas, J. Leinonen, and P. Ihantola, “Plagiarism in take-home
exams: help-seeking, collaboration, and systematic cheating,” in 22nd
Conference on Innovation and Technology in Computer Science
Education, 2017, pp. 238-243, doi: 10.1145/3059009.3059065.

[3] D. Vogts, “Plagiarising of source code by novice programmers a ‘cry
for help’?,” in Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists, 2009,
pp. 141-149, doi: 10.1145/1632149.1632168.

[4] R. Fraser, “Collaboration, collusion and plagiarism in computer
science coursework,” Informatics in Education, vol. 13, no. 2, pp.
179-195, 2014, doi: 10.15388/infedu.2014.01.

[51 L Albluwi, “Plagiarism in programming assessments: a systematic
review,” ACM Transactions on Computing Education, vol. 20, no. 1,
2019, doi: 10.1145/3371156.

[6] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms
among a set of programs with JPlag,” Journal of Universal Computer
Science, vol. 8, no. 11, pp. 1016-1038, 2002.

[77 O. Kamalim and Simon, “Explanation in code similarity
investigation,” IEEE Access, vol. 9, pp. 59935-59948, 2021, doi:
10.1109/ACCESS.2021.3073703.

[8] Simon, J. Sheard, M. Morgan, A. Petersen, A. Settle, and J. Sinclair,
“Informing students about academic integrity in programming,” in
20th Australasian Computing Education Conference, 2018, pp. 113—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

122, doi: 10.1145/3160489.3160502.

J. M. Allen, F. Vahid, K. Downey, and A. D. Edgcomb, “Weekly
programs in a CSI class: experiences with auto-graded many-small
programs (MSP),” 2018.

G. Cosma et al., “Perceptual comparison of source-code plagiarism
within students from UK, China, and South Cyprus higher education
institutions,” ACM Transactions on Computing Education, vol. 17,
no. 2, 2017, doi: 10.1145/3059871.

M. Joy, G. Cosma, J. Y.-K. Yau, and J. Sinclair, “Source code
plagiarism—a student perspective,” IEEE Transactions on Education,
vol. 54, no. 1, pp. 125-132, 2011, doi: 10.1109/TE.2010.2046664.

L. Yu, H. Jiang, H. Zhu, Q. Zhao, and J. Chen, “Investigating the
understanding of plagiarism: a case study of code plagiarism in
China,” in [5th International Conference on Computer Science
FEducation, 2020, Pp- 176-181, doi:
10.1109/ICCSE49874.2020.9201827.

D. Sraka and B. Kauluci\uc, “Source code plagiarism,” in 3/st
International Conference on Information Technology Interfaces,
2009, pp. 461-466, doi: 10.1109/1T1.2009.5196127.

A. Akbar and M. Picard, “Understanding plagiarism in Indonesia from
the lens of plagiarism policy: lessons for universities,” International
Journal for Educational Integrity, vol. 15, no. 1, p. 7, 2019, doi:
10.1007/s40979-019-0044-2.

N. Setiani, B. R. Aditya, I. Wijayanto, and A. Wijaya, “Acceptance
and usage of bibliographic management software in higher education:
the student and teacher point of view,” in /EEE Conference on e-
Learning, e-Management and e-Services, 2020, pp. 55-60, doi:
10.1109/1C3e50159.2020.9288437.

B. Halak and M. El-Hajjar, “Plagiarism detection and prevention
techniques in engineering education,” in /1th European Workshop on
Microelectronics Education, 2016, pp- 1-3, doi:
10.1109/EWME.2016.7496465.

S. Bradley, “Managing plagiarism in programming assignments with
blended assessment and randomisation,” in /6th Koli Calling
International Conference on Computing Education Research, 2016,
pp. 21-30, doi: 10.1145/2999541.2999560.

O. Karnalim, Simon, M. Ayub, G. Kurniawati, R. A. Nathasya, and
M. C. Wijanto, “Work-in-progress: syntactic code similarity detection
in strongly directed assessments,” in [EEE Global Engineering
Education Conference (EDUCON), 2021, pp. 1162-1166, doi:
10.1109/EDUCON46332.2021.9454152.

H. H. Tsang, A. S. Hanbidge, and T. Tin, “Experiential learning
through inter-university collaboration research project in academic
integrity,” in 23rd Western Canadian Conference on Computing
Education, 2018, p. 5, doi: 10.1145/3209635.3209645.

T. Le, A. Carbone, J. Sheard, M. Schuhmacher, M. De Raath, and C.
Johnson, “Educating computer programming students about

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

31

plagiarism through use of a code similarity detection tool,” in
Learning and Teaching in Computing and Engineering, 2013, pp. 98—
105, doi: 10.1109/LaTiCE.2013.37.

M. Ayub, O. Karnalim, R. Risal, W. F. Senjaya, and M. C. Wijanto,
“Utilising pair programming to enhance the performance of slow-
paced students on Introductory Programming,” Journal of Technology
and Science Education, vol. 9, no. 3, pp. 357-367, 2019, doi:
10.3926/JOTSE.638.

Simon et al., “Negotiating the maze of academic integrity in
computing education,” in /TiCSE Working Group Reports, 2016, pp.
57-80, doi: 10.1145/3024906.3024910.

D. Weber-Wulff, “Plagiarism detection software: promises, pitfalls,
and practices,” in Handbook of Academic Integrity, Springer
Singapore, 2016, pp. 625-638.

G. Cosma and M. Joy, “Towards a definition of source-code
plagiarism,” /[EEE Transactions on Education, vol. 51, no. 2, pp. 195~
200, 2008, doi: 10.1109/TE.2007.906776.

D. Zhang, M. Joy, G. Cosma, R. Boyatt, J. Sinclair, and J. Yau,
“Source-code plagiarism in universities: a comparative study of
student perspectives in China and the UK,” Assessment & Evaluation
in Higher Education, vol. 39, no. 6, pp. 743-758, 2014, doi:
10.1080/02602938.2013.870122.

0. Karnalim, “Automated, Personalised, and Timely Feedback for
Awareness of Programming Plagiarism and Collusion,” in /7th ACM
Conference on International Computing Education Research, Aug.
2021, pp. 393-394, doi: 10.1145/3446871.3469768.

Simon, B. Cook, J. Sheard, A. Carbone, and C. Johnson, “Academic
integrity: differences between computing assessments and essays,” in
13th Koli Calling International Conference on Computing Education
Research, 2013, pp. 23-32, doi: 10.1145/2526968.2526971.

C. Kustanto and 1. Liem, “Automatic source code plagiarism
detection,” in 10th ACIS International Conference on Software
Engineering, Artificial Intelligences, Networking and
Parallel/Distributed ~ Computing, 2009, pp. 481-486, doi:
10.1109/SNPD.2009.62.

S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in ACM International
Conference on Management of Data, 2003, pp. 76-85, doi:
10.1145/872757.872770.

M. Joy and M. Luck, “Plagiarism in programming assignments,”
IEEE Transactions on Education, vol. 42, no. 2, pp. 129-133, 1999,
doi: 10.1109/13.762946.

M. Novak, M. Joy, and D. Kermek, “Source-code similarity detection
and detection tools used in academia: a systematic review,” ACM
Transactions on Computing Education, vol. 19,no. 3, pp. 27:1--27:37,
2019, doi: 10.1145/3313290.

https://www.researchgate.net/publication/357002845

