

PROCEEDING BOOK

Sanur, Bali island, Indonesia 09 - 11 May 2016

http://tensymp2016.org

PROCEEDINGS

2016 IEEE Region 10 Symposium

9-11 May 2016 The Sanur Paradise Plaza Convention Centre Bali, Indonesia

COPYRIGHTS

2016 IEEE Region 10 Symposium (TENSYMP)

Copyright ©2016 by Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permission:

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint, or reproduction requests should be emailed to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2016 by IEEE.

IEEE Catalog Number : CFP16TEO-ART ISBN : 978-1-5090-0931-2

Additional copies of this publication is available from

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA

+1 845 758 0400 +1 845 758 2633 (FAX) Email: curran@proceedings.com

TABLE OF CONTENTS

Technical Sessions

TS 01	Web Page Access Prediction Using Hierarchical Clustering Based on Modified Levenshtein Distance and	l
	Higher Order Markov Model	. 1
	Harish Kumar B T, Dr. Vibha L, Dr. Venugopal K R	
TS 02	Toward Hardware Support for a Flexible Sketch-based Network Traffic Monitoring System	. 7
	Theophilus Wellem, Yu-Kuen La, Chao-Yuan Huang, Wen-Yaw Chung	
TS 03	Impact of Social-Aware Forwarding on Traffic Distribution in Social Opportunistic Networks Bambang Soelistijanto	13
TS 04	Traffic Behavior of Local Area Network Based on M/M/1 Queuing Model Using Poisson and Exponential	
	Distribution	, 19
	Kayvan Atefi, Amirali Rezaei, Saadiah Yahya, Alireza Erfanian	
TS 05	Rsync and Rdiff Implementation on Moodle's Backup and Restore Feature for Course Synchronization	
	over The Network	. 24
	Fajar Purnama, Tsuyoshi Usagawa, Royyana M Ijtihadie, Linawati	
TS 06	5G Spectrum Candidates beyond 6 GHz: A Simulation of Jakarta Environment	. 30
TC 07	Ahmad Salaam Mirfananda, Muhammad Suryanegara	20
TS 07	mRPL++ : Smarter-HOP for optimizing mobility in RPL Radhesh Anand M C, Mohit P. Tahiliani	. 30
TS 08	Performance Comparison of GPSR and ZRP Routing Protocols in VANET Environment	42
1500	Aji Setiabudi, Amalia Ayu Pratiwi, Ardiansyah, Doan, Perdana, Riri Fitri Sari	42
TS 09	Tree-Based Protocol for Ad Hoc Networks Constructed with Data Transmission Modems	48
1507	Satoru Ohta	0
TS 10	Mitigation Scenarios for Crossed Timeslot Interference (CTI) in LTE TDD System	54
1010	Reyfista Pangestu, Muhammad Suryanegara	
TS 11	An Observation Attacks Resistant PIN-Entry Scheme Using Localized Haptic Feedback	. 59
	Hao-Jun Xu, Yu-Xuan Dan, Wei-Chi Ku	
TS 12	Information Security Maturity Model: A Best Practice Driven Approach to PCI DSS Compliance	. 65
	Semi Yulianto, Charles Lim, Benfano Soewito	
TS 13	Anomaly Detection Based on Profile Signature in Network Using Machine Learning Technique	. 71
	Kayvan Atefi, Amirali Rezaei, Saadiah Yahya, Siti Hazyanti Binti Mohd Hashim	
TS 14	CMNTS:Catching Malicious Nodes with Trust Support in Wireless Sensor Networks	. 77
	Prathap U, Deepa Shenoy P and Venugopal K R	
TS 15	Scheduling Model For Air Traffic in Indonesia	. 83
	Maureen Linda Caroline, Yudistira Asnar, Achmad Imam Kistijantoro	
TS 16	Student's Programming Activity Tracking System to Help Instructors of the Programming Exercise	. 89
	Baso Habibi, Tsuneo Nakanishi, Akira Fukuda	
TS 17	Teacher's Performance Evaluation Tool Using Opinion Mining with Sentiment Analysis	. 95
TC 10	Francis F. Balahadia, Ma. Corazon G. Fernando, Irish C. Juanatas	
TS 18	Developing Prototype of Web-based Home Controlling for Teaching Trainer	. 99
TS 19	S. Sendari, D. Lestari, Y. Rahmawati, A. Prabowo A Mobile Application of American Sign Language Translation via Image Processing Algorithms	104
1519	Cheok Ming Jin, Zaid Omar, Mohamed Hisham Jaward	104
TS 20	Interaction Techniques Using Head Gaze for Virtual Reality	110
15 20	Rowel Atienza, Ryan Blonna, Maria Isabel Saludares, Joel Casimiro, and Vivencio Fuentes	110
TS 21	A Novel Face Recognition for Smart Glasses	. 115
10 -1	Nanoka Sumi and Vasily Moshnyaga	110
TS 22	Decentralized Face Recognition Scheme for Distributed Video Surveillance in IoT-Cloud Infrastructure	. 119
	Anang Hudaya Muhamad Amin, Nazrul Muhaimin Ahmad, Afiq Muzakkir Mat Ali	
TS 23	A Novel Method for Wet/Dry Cough Classification in Pediatric Population	. 125
	Yusuf A Amrulloh, Dwi A R Wati, Farida Pratiwi, Rina Triasih	
TS 24	Smart Foot Device for Women Safety	. 130
	Nandita Viswanath, Naga Vaishnavi Pakyala, Dr. G. Muneeswari	
TS 25	Exploiting Real-Time Big Data to Empower Smart Transportation using Big Graphs	135
	M Mazhar Rathore, Awais Ahmad, Anand Paul, Uthra Kunathur Thikshaja	
TS 26	Real-Time Human Sitting Posture Detection Using Mobile Devices	140
	Jheanel E. Estrada, Larry A. Vea	
TS 27	Real-Time Viewing Automated Parking System	. 145
	Andrea R. Demegillo, Francis F. Balahadia, John Kerwin D. Dizon, Kenneth Bryan A. Talon, Orlando M. Lingo	

TS 28	Real-Time Human Movement Mapping to a Virtual Environment	150
T C 30	Subodha Charles	
TS 29	Detection and Analysis Model for Grammatical Facial Expressions in Sign Language	155
TC 20	Bhuvan M S, Vinay Rao D, Siddharth Jain, Ashwin T S, Ram Mohana Reddy Guddetti, Sutej Pramod Kulgod	1/1
TS 30	Framework of Semantic Data Warehouse for Heterogeneous and Incomplete Data Ekasari Nugraheni, Saiful Akbar, G. Ayu Putri Saptawati	101
TS 31	Comparative analysis of PCA and KPCA on paddy growth stages classification	167
	Hendra Halim, Sani M. Isa, Sidik Mulyono	
TS 32	Big Data Analytics for Transportation: Problems and Prospects for its Application in China	. 173
	Robert P. Biuk-Aghai, Weng Tat Kou and Simon Fong	
TS 33	Data Mining for Marketing in Telecommunication Industry	. 179
	Rokhmatul Insani, Hira Laksmiwati Soemitro	
TS 34	Rudas : Energy and Sensor Devices Management System in Home Automation	184
	Padma Nyoman Crisnapati, I Nyoman Kusuma Wardana, I Komang Agus Ady Aryanto	
TS 35	Comparison Study of S-Band Vivaldi-Based Antennas	188
	Nurhayati, Eko Setijadi, Gamantyo Hendrantoro	
TS 36	Wideband Slotted Planar Inverted-F Antenna for Millimeter-Wave 5G Mobile Devices	194
TC 27	Khaled Mahbub Morshed, Karu P. Esselle, Michael Heimlich, Daryoush Habibi, and Iftekhar Ahmad	100
TS 37	Formal Reliability Analysis of Protective Systems in Smart Grids Awais Mahmood, Osman Hasan, Hassan Raza Gillani, Yassar Saleem, Syed Rafay Hasan	198
TS 38	Re-gripping analysis based on implementation of slip-detection device for robotic hand model	203
1550	Abdulrahman Abdulkareem S. Al-Shanoon, Siti Anom Ahmad, Mohd. Khair b. Hassan	205
TS 39	A Secure Expansive Aggregation in Wireless Sensor Networks for Linear Infrasturcture	207
1507	Kaushal Shah, Devesh C. Jinwala	
TS 40	A Passive and Privacy-friendly Area based Localization for Wireless Indoor Networks	213
	Nazrul M. Ahmad, Anang Hudaya Muhamad Amin, Subarmaniam Kannan, Afiq Muzakkir Mat Ali, Mohd	
	Faizal Abdollah, Robiah Yusof	
TS 41	MIPS64 Simulator on a Mobile Environment	219
	Ma. Angelica Capuz, Lorraine Policarpio, Brylle Joseph Quinto, Selwyn Emerson Reyes, Roger Luis Uy	
TS 42	Software Testing: A Survey and Tutorial on White and Black-box Testing of C/C++ Programs	225
	Muhammad Nouman, Usman Pervez, Osman Hasan, Kashif Saghar	
TS 43	A Novel Approach for Iris Recognition	231
	Rocky Yefrenes Dillak, Martini Ganantowe Bintiri	
TS 44	Short Term Load Forecasting of Eid Al Fitr Holiday By Using Interval Type – 2 Fuzzy Inference System	225
	(Case Study: Electrical System of Java Bali in Indonesia)	237
TS 45	Jamaaluddin, Imam Robandi Monitoring and Optimization of Speed Settings for Brushless Direct Current (BLDC) Using Particle	
1545	Swarm Optimization (PSO)	243
	Izza Anshory, Imam Robandi, Wirawan	240
TS 46	Implementation of a Three-level ZVZCS Converter with Passive Snubber	249
	Bor-Ren Lin, Han-Sheng Syu	
TS 47	Three-Level Converter with Wide ZVS Operation and Low Circulating Loss	255
	Bor-Ren Lin, Shih-En Jian, Jia-Sheng Chen	
TS 48	Prototyping Design of Electronic End-Devices for Smart Home Applications	261
	Trio Adiono, Rachmad Vidya Wicaksana Putra, Maulana Yusuf Fathany, Khilda Afifah, Muhammad Husni	
	Santriaji, Braham Lawas Lawu, Syifaul Fuada	
TS 49	Towards Autonomous Collision Avoidance in Surgical Robots using Image Segmentation and Genetic	
	Algorithms	266
TC =0	Saad Hameed, Osman Hasan	
TS 50	Improving Server Utilization and Vehicle Waiting Time	271
TS 51	Elmer R. Magsino and Ivan W. H. Ho Convolutional neural network for vehicle detection in low resolution traffic videos	277
1551	Carlo Migel Bautista, Clifford Austin Dy, Miguel Iñigo Mañalac, Raphael Angelo Orbe and Macario Cordel II	211
TS 52	Reinstating E-Voting as A Socio-Technical System: A critical review of the current development in	
10.02	Developing Countries	282
	Manik Hapsara	0_
TS 53	AppLERT: A Mobile Application for Incident and Disaster Notification for Metro Manila	288
	Bernie S. Fabito, Francis F. Balahadia, Jade Devin N. Cabatlao	
TS 54	Analysis on the error contribution of various leakages to an ultra-low power voltage reference for WSNs	293
	Mark Daniel D. Alea, John Richard E. Hizon, Louis P. Alarcon	
TS 55	Analysis Of Performance DVB-T2 Using MIMO System Over MMSE Channel Estimation	299
	I Gede Puja Astawa, Tri Budi Santoso	
TS 56	Quantifying the throughput and latency contribution in secured IEEE 802.15.6 WBAN simulated	
	transmission	305
TC -7	John Adriel Benolirao, Anton Jaie de Joya, Isaac Lim, Lois Klaryze Osayta, Macario Cordel II	
TS 57	Effects of Different Types of RSS Data on the System Accuracy of Indoor Localization System	311

	Abdulraqeb Alhammadi, Fazirulhiysam, Mohd. Fadlee, Saddam Alraih	
TS 58	A Context-aware IoT Architecture through Software-defined Data Plane	315
	Ping Du, Pratama Putra, Shu Yamamoto, Akihiro Nakao	
TS 59	Hamming Coding for Multi-relay Cooperative Quantize and Forward Networks	321
	Nasaruddin, Rony Kurnia	
TS 60	Optimal Scheduling of Spectrum Sensing in LTE-A TDD Frame	326
	Vishnupriya K P, Sasirekha GVK, Jyotsna Bapat, Debabrata Das	
TS 61	A Static Transliteration Approach for Assembly Language Translation	332
	Jonathan Paul Cempron, Jonathan Benedict Gonzales, Yuuki Hayakawa, Chudrack Salinas, Roger Uy	
TS 62	Construction of Jakarta Land Use/Land Cover Dataset Using Classification Method	337
	Tjeng Wawan Cenggoro, Sani M. Isa, Gede Putra Kusuma	
TS 63	DataTweet: An Architecture Enabling Data-Centric IoT Services	343
	Soumya Kanti Datta, Christian Bonnet, Rui Pedro Ferreira Da Costa, Jérôme Härri	
TS 64	Covariance Matrix Compact Differential Evolution for Embedded Intelligence	349
	Yutana Jewajinda	
TS 65	A New Approach to Detect P300 in A Single Trial Based on PCA and SVM Classifier	355
	Radhika Swarnkar, Shyam Prasad P.M, A.G. Keskar, N.C. Shivprakash	
TS 66	Roulette Wheel Selection Applied to PSO on Numerical function in Discrete and Continuous space	361
	Pimolrat Ounsrimuang, Supakit Nootyaskool	
TS 67	Absolute Value Principal Components Analysis (AVPCA) and Parameter Estimation (PE) to Bearing	
	Fault Detection using Rotor Speed Signal Monitoring - A Comparative Study	367
	Moussa Hamadache, Dongik Lee	
TS 68	High Speed 3D Object Retrieval Using Skewness Value	373
	Vicky Sintunata, Terumasa Aoki	
TS 69	gold-Fourier Kaluri Method for Estimating Vortex Shedding Frequency	379
	Kaluri V. Rangarao, Venugopal Arumuru	
TS 70	A Framework for Measuring Infection Level on Cacao Pods	384
	Daniel Stanley Tan, Robert Neil Leong, Ann Franchesca Laguna, Courtney Anne Ngo, Angelyn Lao, Divina	
	Amalin, Dionisio Alvindia	
TS 71	Highly Sensitive Plastic Optical Fiber with Palladium Sensing Layer for Detection of Hydrogen Gas	390
	P. T. Arasu, A.L. Khalaf, A.S.M.Noor, M. H. Yaacob	
TS 72	Usability and Accessibility Analysis of Selected Government Websites in Sri Lanka	394
	S.Gopinath, V.Senthooran, N.Lojenaa, T.Kartheeswaran	
TS 73	Fire Incidents Management System in the City of Manila through Geo-mapping	399
	Maricor Y. Ingal, Francis F. Balahadia, Ralph Louisse T. Tolentino, Mico J. Valencia, Arlene R. Caballero	
TS 74	Simulation and Analysis of Energy Harvesting from Grey water and Rain water in High rises	404
	Kishan Ramesh Kumar, Sutej Pramod Kulgod, Anish Surendran	
TS 75	Module-Coordination of a Two-Modular High Temperature Gas-Cooled Nuclear Plant	410
	Zhe Dong, Maoxuan Song	
TS 76	Optimum selection of Inductor as a current limiter in AC power systems	416
	Dr. Swati Devabhaktuni, Dr. Hari Shankar Jain, Kiran Kumar Pamera	
TS 77	Evaluation of Implementation MyUMN as Academic Information System Using UTAUT to Multimedia	
	Nusantara University	420
	Dwi Kristiawan MS, Harisno	

Short Term Load Forecasting of *Eid Al Fitr* Holiday By Using *Interval Type – 2 Fuzzy Inference System* (Case Study: Electrical System of Java Bali in Indonesia)

Jamaaluddin^{1,2)} ¹⁾Dept. of Electrical Engineering Institute of Technology, Sepuluh Nopember (ITS), Surabaya 60111, Indonesia. ²⁾Dept. of Electrical Engineering University of Muhammadiyah Sidoarjo, Sidoarjo 61271, Indonesia. jamaaluddin15@mhs.ee.its.ac.id

Abstract— An important religious holiday celebrated by Muslims in the world including in Indonesia is Eid Al Fitr. Holiday of Eid Al Fitr causing decreased demand of electrical energy until 28.66% in case of Java Bali electricity system in Indonesia. The reduction of electrical demand needs to be known because it related to the efficiency of generation power system. To know the load changes on the future then required the forecasting of load. Forecasting of load is related with generation power systems, the power delivery schedule (dispatch scheduling), maintenance planning for the generating unit (maintenance units) and evaluation regarding the reliability of the electric power system stability (stability). Forecasting methods used in this research is IT-2 FIS. By analyzing the peak load on the day and 4 days before Eid Al Fitr in the previous year continued analysis by using IT-2 FIS will be obtained at the peak load forecasting Eid Al-Fitr in the coming year. The accuracy of this method is shown with the average of error value in 2012, 2013 and 2014 amounting to 0,24%. This value is better than using the IT-1 FIS which has a value of error amounting to 0.3%. The research concluded that IT-2 FIS can be used to Short Term Load Forecasting.

Keywords ; Type-2 Fuzzy Inference System, Short Term Load Forecasting, Eid Al Fitr.

I. INTRODUCTION

Since the Industrial Revolution, the need for electrical energy has increased. Most of the energy required by modern society is supplied in the form of electrical energy [1]. Therefore, electrical energy is a basic necessity today, aside from other major needs (such as eating, clothing and housing). Without electricity in one minute, modern society cannot perform activities [2][3]. Electric power is used in various sectors, among others: the industrial sector, public services, hospitality, research centers, education and household. The Java Bali electrical system is one of the big providers electricity in Indonesia. Java-Bali electricity system has its own loading characteristics, among others: Seasons and commuting patterns. Imam Robandi¹⁾ ¹⁾Dept. of Electrical Engineering Institute of Technology, Sepuluh Nopember (ITS), Surabaya 60111, Indonesia. robandi@ee.its.ac.id

Every year, Indonesian people, especially Muslims always celebrate *Eid Al Fitr*, or the *Eid* holiday, which marks the end of *Holy Ramadhan*, the fasting month. In celebrating *Eid Al Fitri*, a great deal of work activities, including idustrial activities are closed for about 1 (one) week. This holiday season greatly results in a decrease in the electrical load. In the Java-Bali electricity system, the average decrease of this load is 28.66%.

The decrease of this load must be carefully estimated. Operators of electricity require accurate estimation of electricity needs. To obtain a high level of power generation efficiency. Load prediction is very closely related to the operation of power systems, for example, the power delivery schedule (dispatch scheduling), maintenance planning for the unit generating unit (maintenance units) and evaluation regarding the reliability of the electric power system stability (stability) [4][5].

Over the past two decades, there has been atremendous growth in the use of fuzzy logic controllers in power systems applications [6]. One method that can be used to make short-term load forecasting is: *Interval Type – 2 Fuzzy Inference System (IT-2 FIS)*. This method is an extension of previous methods, ie : *Type –1 Fuzzy Inference System (T-1 FIS)*. By using the method of *IT-2 FIS*, load demand can be predicted in the upcoming *Eid Al Fitr* celebrations. By doing So, the schedule of power delivery (dispatch scheduling), maintenance planning for the unit generating unit (maintenance units) and employee working hours arrangements can be planned early, with an expectation to increase the efficiency of power generation [7].

II. METHODE

A. Structure of Interval Type- 2 Fuzzy Logic System (IT-2 FLS)

An IT-2 FLS contains five interrelated components, ie: fuzzifier, rules base, inference engine, type-reducer and

defuzzifier shown in Figure 1. Process mapping of crisp value input x to output crisp value can be expressed quantitatively in equation Y = f(x).

Figure 1. below indicates that the value a good crisp of defuzzification input into type 0 (known as single fuzzification), *Type-1* or *Interval Type – 2 Fuzzy Sets (IT-2 FSs)*, then the inference engine to produce an output of rule base *IT-2 FSs*. IT-2 FSS is then processed by the type-reducer (combining of set output and then calculating the centroid), leading to T-1 FIS called a type of reduced set. A Defuzzifier and then get it defuzzification type-reduced set to produce a crisp output. Formulation process mapping from input to output using *Interval Type-2 fuzzy logic* called *IT-2 FIS*. *IT-2 FIS* structure is in MATHLAB objects that contain all of the information *IT-2 FIS*. This structure is kept in any GUI tool [4].

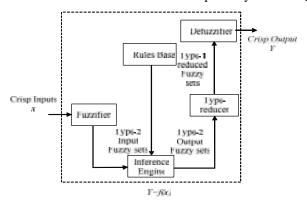


Fig. 1. Type-2 Fuzzy Logic System (T2FLS) [8]

B. Membership functions and fuzzy rules

The advantage of the fuzzy inference is easy to formulate the experience and knowledge of experts and highly flexible in forecasting by changing the rules. Fuzzy IF-THEN rules are used in this method for a maximum load is expressed by Equation 1. As follows:

IF X is
$$A_i$$
 AND Y is B_i THEN Z is C_i (1)

Input of variable values Y obtained from the adjacent holiday in one year. Fuzzy sets A_i , B_i , C_i makes eleven sets, where each set consists fuzzy, fuzzy type-1 top and bottom, then restricted as *FOU* and called *interval type-2 fuzzy sets* (*IT2FSs*) [7].

C. Operation on Membership Function Type-2

The following operations on the set of fuzzy, membership function of type-2. As shown Fig.2 :

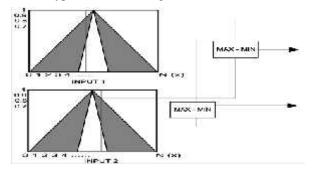


Fig. 2. Operations on Membership Function Type-2

Operations on fuzzy set *Interval Type-2 Fuzzy Set* is almost the same as type-1, only the *fuzzy logic system Interval Type-2*, the operation is performed on the two intervals, the top (upper function) and bottom (lower membership function) at once.

D. Type-2 Fuzzy Inference System (FIS)

FIS in type-2 is almost the same as the *FIS* in type-1, using the same stage. *FIS* operation of type-2 can be seen in Figure 3 for completion "tips" meals together as follows [9].

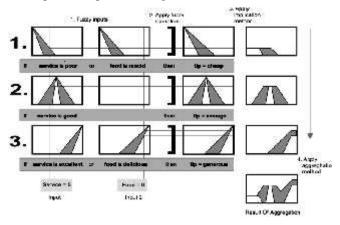


Fig. 3. Mamdani *FIS* on *Type-2*

E. Defuzzification

Defuzzification is the process of mapping the fuzzy, logic control through type-reducer with an iterative method for calculating the centroid IE Karnik Mendel algorithm to control the actions nonfuzzy (crisp). This is possible because the central area of a *IT-2 FSs* is the *Type-1 Fuzzy*, *sets* (*T-1 FSs*) and the set is really marked by the end point on the left and right then, calculating the centroid of *Interval Type-2 Fuzzy*, sets simply requires computing two end points. Using a centroid defuzzification process in *IT-2 FLS* been proposed by Karnik and Mendel [10].

III. STAGES OF RESEARCH

A. Preprocessing

In the preprocessing stage is a grouping of data national religious holidays. Then calculate the peak load 4 days before national religious holidays [11].

$$MaxWD_{(i)} = \frac{WD_{(i)h-4} + WD_{(i)h-3} + WD_{(i)h-2} + WD_{(i)h-1}}{4}$$
(2)

The next step is calculating the difference in peak load (Load Difference) on national holidays will be predictable.

$$LD_{MAX}(i) = \frac{MaxSD(i) - MaxWD(i)}{MaxWD(i)} x100$$
(3)

Then look for a Peak Load Variation (Variation Load Reference) on a day that would be predictable.

$$VLD_{\max}(i) = LD_{\max}(i) - TLD_{\max}(i)$$
(4)

B. Processing

At this stage a short-term load forecasting model for the national religious holidays Java Bali electricity system into the *Interval Type-2 Fuzzy Inference Systems* and *Neural Network*. The steps as follows:

- 1. Creating a membership function input *interval type-2 fuzzy logic system* that inputs *X* and *Y*, and *Z* that Output membership function for a religious national holiday to be predictable. With the following conditions:
 - *X: VLD_{max}* (*i*) the same public holidays in the year before forecasting.
 - *Y: VLD_{max}* (*i*) previous holidays (adjacent) in the same type of holiday in forecasting
 - Z: Forecast VID_{max} (on) a holiday that will forecast

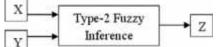


Fig. 4. Input and Output for Data Processing

- 2. Create a fuzzy rules (fuzzy, rules) *Interval Type-2 Fuzzy*, *Inference System (IT-2FIS)* as follows[11]: *IF X* is A_i AND Y is B_i THEN Z is C_i
- 3. Applying operation on the (IT-2 FIS).
- 4. Applying the *MIN* function on fuzzy, implications.
- 5. Applying the composition *MAX* on each fuzzy, implication results.
- 6. Calculating firm output (non fuzzy, values) with the assertion method Centroid through reducer type using Kernik Mendel algorithm so as to get the value Forecast *VLD_{max}*
- C. Flowchart of Forecasting by Using IT-2

Fig. 5. Diagram of Forecasting for IT-2 Fuzzy

D. Post processing

In the post-processing stage of the calculation results of short-term load forecasting for a religious, national holiday on the Java-Bali electrical system, the following:

1. Calculate the difference peak load forecast (load forecast reference) for a holiday of forecast:

Forecast $LD_{MAX}(i)$ =ForecastVLD_{MAX}(i)-TLD_{MAX} (5)

2. Calculate the difference of the holiday peak load forecast:

$$P'_{MAX}(i) = MaxWD(i) + \frac{(ForecastLD_{MAX}xMaxWD(i))}{100}$$
(6)

3. Calculating error forecasting results:

$$Error\% = \frac{P_{forecast} - P_{actual}}{P_{actual}} x100$$
$$Error\% = \frac{P_{MAX}(i) - MaxSD(i)}{MaxSD(i)} x100$$
(7)

IV. DATA AND EXPERIMENT PROCEDURE

To perform the analysis, it is necessary the data calendar of religious holidays occur (See Table 1.) and the data load on the holiday and four days before the holidays (See table 2.).

Table 1. Date of the Isra 'Mi'raj and Eid Al Fitr

1	Isra'	17	6	27
1	Mi'raj	June	June	May
2	Idul Fitri	19	8	28
2	Ι	August	August	July

Table 2. Load (in MW) during holidays and 4 days before it

	Days to					
	H-4	Н-3	Н-2	H-1	Н	
2012						
1. Isra Mi' raj	18,072.00	19,547.00	19,877.00	18,547.00	17,595.00	
2.Idul Fitri	18,122.00	16,805.00	14,771.00	14,280.00	13,175.00	
2013						
1. Isra Mi' raj	19,099.00	21,123.00	21,734.00	21,506.00	19,071.00	
2.Idul Fitri	17,337.00	17,151.00	16,201.00	14,942.00	13,777.00	
2014						
1. Isra Mi' raj	22,843.00	21,480.00	20,429.00	21,913.00	20,687.00	
2.Idul Fitri	19,707.00	17,920.00	16,180.00	15,214.00	14,227.00	

Due to religious holidays are observed is *Eid Al Fitr*, the data of load and calendar displayed is *Eid Al-Fitr* and holiday earlier and close to the holiday *Eid Al Fitr* day is *Isra 'Mi'raj*.

A. Calculation of X value

The calculation of the value of the input variable X at the peak load forecasting of Eid Al Fitr holidays in 2014 is to find the value of Variable Load inference (VLDMAX) year before (Eid Al Fitr 2013).

VID_{MAX} value calculation Eid Al Fitr 2013 calculated based on the equation 2, 3 and 4 :

1. Eid Al Fitr, 2012

Looking for MaxWD and LDMAX value from data of load peaks 4 days before holidays and on Eid Al Fitri 2012 holidays as follows:

2012 nonaujs us	10110 (05)
$MaxWD_{H-4}$	= 18122.00 MW
MaxWD _{H-3}	= 16805.00 MW
$MaxWD_{H-2}$	= 14771.00 MW
$MaxWD_{H-1}$	= 14280.00 MW
MaxSD	= 13175.00 MW

$$MaxWD (Idul Fitri2012) = \frac{MaxWD_{H-4} + MaxWD_{H-3} + MaxWD_{H-2} + MaxWD_{H-2}}{MaxWD_{H-3} + MaxWD_{H-3} + Ma$$

4

4

$$MaxWU(Idul Fitri2012) = \frac{18122.00 + 16805.00 + 14771.00 + 14280.00}{16000}$$

_

MaxSD(Idul Fitri 2012) - MaxWD(Idul Fitri 2012) LDMAX(Idul Fitri 2012) = x100% MaxWD(Idul Fitri 2012)

$$=\frac{13175.00 - 15994.50}{15994.50} \times 100\%$$

= -17.63

2. Eid Al Fitr, 2013

Looking for MaxWD and LDMAX value from data of load peaks 4 days before holidays and on Eid Al Fitr 2013 holidays as follows: 17227 00 1000

$MaxWD_{H-4}$	= 1/33/.00 MW
$MaxWD_{H-3}$	= 17151.00 MW
$MaxWD_{H-2}$	= 16201.00 MW
$MaxWD_{H-1}$	= 14942.00 MW
MaxSD	= 13777.00 MW
in the come more	the obtained regult

in the same way, the obtained results as Table 3.

Eid Al Fitr, 2014 3.

> Looking for MaxWD and LDMAX value from data of load peaks 4 days before holidays and on Eid Al Fitr 2014 holidays as follows:

$MaxWD_{H-4}$	= 17337.00 MW
MaxWD _{H-3}	= 17151.00 MW
$MaxWD_{H-2}$	= 16201.00 MW
$MaxWD_{H-1}$	= 14942.00 MW
MaxSD	= 13777.00 MW
in the come way	the obtained regults

in the same way, the obtained results as Table 3. To find the value TLDMAX (Eid Al Fitr 2014) as follows :

2

LDMAX(Idul Fitri 2013) + LDMAX(Idul Fitri 2012) TLDMAX(Idul Fitri 2014) =

$$=\frac{-17.55+(-16.03)}{2}$$

VLDMAX(Idui Fitri 2014) = LDMAX(IduiFitri2014) - TLDMAX(Idui Fitri 2014)

= -17.55 - (-16.79)

= -0.76

B. Calculation of Y value

The calculation of the value input variable Y forecasting the peak load of Eid Al Fitr holidays in 2014 is looking for difference of variable load (VLDMAX) holidays value approaching that kind VLDMAX (Isra 'Mi'raj 2014).

1.	Isra Mi'raj 2	012
	Looking for t	he value of <i>MaxWD</i> and <i>LDMAX</i> load
	peaks data 4 c	lays before holidays and on Isra' Mi'raj
	2012 holidays	as follows:
	$MaxWD_{H-4}$	= 18072.00 MW
	MaxWD _{H-3}	= 19547.00 MW
	$MaxWD_{H-2}$	= 19877.00 MW
	$MaxWD_{H-1}$	= 18547.00 MW
	MaxSD	= 17595.00 MW
		MaxWD _{R-4} + MaxWD _{R-1} +MaxWD _{R-2} + MaxWD _{R-1}

8-1 MaxWD (Isra Miraj2012) =

$$MaxWD (Isra'Mi'raj2012) = \frac{18072.00 + 19547.00 + 19377.00 + 18547.00}{4}$$

= 19010.75 MW

NON DO

MaxSD(Isra Mi'raj2012) - MaxWD(Isra Mi'raj2012] LDMAX (Isra Miraj2012) r100% MaxWD(Isra mi raj2012)

= -7.45

17

2. Isra Mi'raj 2013 Looking for the value of MaxWD and LDMAX load peaks data 4 days before holidays and on Isra' Mi'raj 2013 holidays as follows:

MaxWD _{H-4}	= 19099.00 MW
MaxWD _{H-3}	= 21123.00 MW
MaxWD _{H-2}	= 21734.00 MW
MaxWD _{H-1}	= 21506.00 MW
MaxSD	= 19071.00 MW
in the same wa	y, the obtained results as Table 3.

3. Isra Mi'raj 2014

Looking for the value of MaxWD and LDMAX load peaks data 4 days before holidays and on Isra' Mi'raj 2014 holidays as follows:

$MaxWD_{H-4}$	= 22843.00 MW
$MaxWD_{H-3}$	= 21480.00 MW
$MaxWD_{H-2}$	= 20429.00 MW
$MaxWD_{H-1}$	= 21913.00 MW
MaxSD	= 20687.00 MW
in the same way,	the obtained results as Table 3. To
find the value TLL	DMAX (Isra' Mi'raj 2014) is as
follows :	

LDMAX(Isra Miraj 2013) + LDMAX(Isra Miraj 2012) TLDMAX(Isra Miraj2014) =

$$=\frac{-8.60 + (-7.45)}{7}$$

= -8.025

VLDMAX(Isrd Mtraj2014) = LDMAX(Isrd Mtraj2014) - TLDMAX(Isrd Mtraj2014) = -4.25 - (-8.025) = 3.775

C. Calculation of Z Value

The calculation of the value output variable Z is forecasting the peak load of *Eid Al Fitr* holidays in 2014 is looking for value difference of *Variable Load (VLDMAX)* in forecasting *Eid Al Fitr* 2014. Calculations in the same manner for the entire national religious holidays year period 2012-2014 to obtain the value *VLDMax* using Microsoft Office Excel 2010 software that results in a table as shown in Table 3 as follows:

Table 3. Value Of MaxWD, LD_{MAX} at 2012 - 2014

Name of Holiday	2011		2013		2014	
	MAXWD	LDMAX	MAXWD	LDMAX	MAXWD	LIMIAX
Tata Militaj	19010,75	-7,4471	20.865 5	-9.6001	7 655,25	4,5 97
2 Idul Frai	15 5 5 4 5	-17,6279	16 407 75	-16,0336	17.255.25	-17,5497

V. PEAK LOAD FORECASTING FOR HOLIDAYS *EID AL FITR* USING *IT-2 FIS*

IT-2FIS to forecasting of peak load the holidays, national religious that the membership function variable input and output of *Interval Type-2 Fuzzy Inference System*.

A. Membership Function for Input and Output Variable

The set of *Interval Type-2 Fuzzy*, fuzzy sets similar to the type-1. *Interval Type-2 Fuzzy*, done twice a *fuzzy*, membership function type-1. Input variables (X, Y) and output variables (Z) consists of 11 *fuzzy* sets are described as follows:

range of values -12 s/d -8
range of values -10 s/d -6
range of values -8 s/d -4
range of values -6 s/d -2
range of values -4 s/d 0
range of values -2 s/d 2
range of values 0 s/d 4
range of values 2 s/d 6
range of values 4 s/d 8
range of values 6 s/d 10
range of values 8 s/d 12

The figure of the antecedent (X, Y) and consequent (Z) *IT-2 FIS* as follows:

Fig. 6. Membership Function Input Variable X (IT-2 FIS)

Fig. 7. Membership Function Input Variable Y (IT-2 FIS)

Fig. 7. Membership Function Input Variable Z (IT-2 FIS)

Translation of antecedent membership functions (X, Y) and consequent (Z) is used for the manufacture of the *Rules Base Fuzzy Inference System*. Making the basic rules of Fuzzy *(Fuzzy Rule Base)* short-term load forecasting in 2012 is shown table 4. Through table 7.

Table. 4. Input (X, Y) and output (Z) By VLD_{MAX} in 2012 and 2013

Name of Holiday	2012	2013	I	nput	Output
	VLD _{MAxX}	VLD _{MAX}	X	Y	Z
1. Isra Mi'raj	-0.20475	-4.34149	-0.2047	2.111261	-4.34149
2. Idul Fitri I	-6.34583	-2.17605	-6.3458	-4.341488	-2.17605

Table 5. Making Input (X, Y) and output (Z) By VLD_{MAX} in 2012 and 2013

frame of Holiday		Utgave of aveabording (p)											
J, Isso M/cm	X 0,20175	NVE	NB	W		NUS 1,1025)	УК С, 1 5 463	PIS	15	PM	PH	PYR	3 20
2, Jan Fred (1,3458J		4,620	1,3239							쇖		NN.

Table. 6. Process Rules for Input Y in 2012

Kerre of Holiday	ð	Terrer of membershere (a)											-
1.Landera	т 2,11116	UVR.	ж	ML	3 8	BAK	ZΣ	948 0,54-97		IN	ED	1940	5 748
2,341,11913	1,5111			4,150N	6,23906								KR.

Table. 7. Process Rules for Output Z in 2012

Nome of booking	- X - X	1			Linew	e of March	viden	de la					wh
18.91		W	К		1.122	10000	1.2	177	11	1	P	15	- 25
	2	H	5	MK.	1.5	AVS	2	8	8	N	Ľ.	ы	2
I Jose Wing	4,94746	36		0,3707	0,8292		1		Ĩ.	- 903 C	- 282	20	13
Zianilini	ZDED	í.		- 22	0,0830	0,5119				Č.		1	.XV 8

Table 8. Basic Rules table (*fuzzy rules*) for forecasting the
year 2012

XAY NVI NIL NIM NVII NIL NIM	NS NVS	NVS	ZE.	PVS	PS	PM	ΡΠ	PVN
NS		YE.	NVS.	6 9		3		
NVS ZE PVS	23	PV <mark>S</mark> PS	PS ZK	NS/ZE	NVS NS			
PS	PS				PVS	[]]		
PM						- 3		
PB								
IVB								

If there is a fuzzy rule is the same for input values X and, but different Z output value, whichever is the greater the value of its output being more removed

Table 9. Conversion Table Basic Rules Forecasting the Year 2012 for Matlab Software Code

B. Implementation forecasting of Short Term Load for Eid Al Fitr holidays On Electrical Systems Java Bali using Method Interval Type-2 Fuzzy Inference System (IT2FIS) at 3 Years of data taking into account the Year Actual Data Forecasting.

Short-term load forecasting using the *Interval Type-2 Fuzzy Inference System* executed through m.file program in Matlab using the given function in the Toolbox *IT-2FLT*, to obtain the value of forecasting *VLDmax. Value of VLDmax forecasting* results continued (post processing) using software MS.Excell to get the peak load forecasting and forecasting error value. The results of short-term load forecasting error method *IT-2FIS* in 2012 through 2014 can be seen in Table. 10 below, then comparison with *T-1 FIS*.

Table 10. Comparison of Forecasting and Actual load on the holiday of *Eid in Fitri* 2012, 2013 and 2014

Year	I-1 I D Forcs (MW)	ALL (MIW)	Err (%)	Forcs (MW)	ALL (MW)	E. (%)
2012	13,139,53	13,175.00	0.2691	13 173.68	13,175.00	0.0100
2014	13,765.91	13,///.00	0.0805	13,151.81	13,11100	U.160/
2014	14,106 19	14,227 00	0 5580	14,106.50	14,22700	0.5586
		Sum	0.90//		Sum	0.7294
		Aven age	0.3026		Ave and	0.2431

In Table 10. The average error value in 2012-2014 by using T-1 FIS are: 0.3026%, whereas when used IT-2 FIS obtained: 0.2431%.

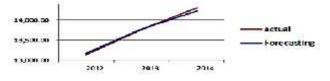


Fig. 8. Graph of comparison between actual and forecast by using *T-1 FIS*

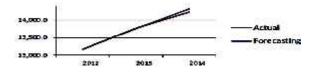


Fig. 9. Graph of comparison between actual and forecast by using *IT-2 FIS*

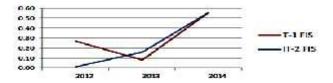


Fig. 10. Graph of comparison error value forecast between *T-1 FIS* and *IT-2 FIS*

In Figure 10, seen the error value of short-term load forecasting *T-1 FIS* and *IT-2 FIS*. *IT-2 FIS error value* has lower than *IT-1 FIS*.

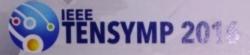
VI. CONCLUSION

This paper presented Short Term Load Forecasting *Eid Al Fitr* holiday by using *Interval Type-2 Fuzzy Inference System* (*IT-2 FIS*). Load forecasting is done is to predict the maximum load. Input analysis in the form of daily peak load value and calendar information. Input this analysis is the value of daily peak load and calendar information. Results obtained by using the *IT-2 FIS*, load forecasting in 2012, 2013 and 2014 have an average value of 0.2431% error, Whereas when using *Type-1 FIS* has an average value of 0.3026% error.

With the above results, the *IT-2 FIS* can be proposed as one of the methods used to conduct short-term load forecasting. To increase the accuracy of the model, it can be done expand the membership function of the current forecast model. When do expansion membership function, then the data will have a smaller range and will obtain more accurate forecasting results [12].

REFERENCES

- F. P. Demello and C. Concordia, "Concepts of Synchronous Machine Stability as Affected by Excitation Control," *IEEE Trans. Power appear. Syst.*, vol. PAS-88, pp. 316–329, 1969.
- [2] I. Robandi, Desain Sistem Tenaga Modern. Yogjakarta: Andi Ofset, 2006.
- [3] I. Robandi, Modern Power System Control, 1st ed. Yogjakarta: Andi, 2009.
- [4] K.-B. Song, Y.-S. Baek, D. H. Hong, and G. Jang, "Short-Term Load Forecasting for the Holidays Using Fuzzy Linear Regression Method," *IEEE Trans. Power Syst.*, vol. 20, no. 1, pp. 96–101, 2005.
- [5] N. Amral, C. S. Ozveren, and D. King, "Short term load forecasting using Multiple Linear Regression," 2007 42nd Int. Univ. Power Eng. Conf., pp. 1192–1198, 2007.
- [6] S. Ahmadi, H. Bevrani, and H. Jannaty, "A fuzzy inference model for short-term load forecasting," 2012 Second Iran. Conf. Renew. Energy Distrib. Gener., pp. 39–44, 2012.
- [7] I. A. Dharma, Robandi, "Aplikasi Metode Fuzzy Inference System (FIS) dalam Perramalan Beban Jangka Pendek Untuk Hari-hari libur (Study Kasus di Pulau Bali).No Title," *Processing 9 thSeminar Intell. Technol. Its Appl.*, no. 2008, p. 57, 2008.
- [8] N. N. Karnik and J. M. Mendel, "Type-2 fuzzy logic systems," *IEEE Trans. Fuzzy Syst.*, vol. 7, no. 6, pp. 643–658, 1999.
- [9] S. N. Sivanandam, S. Sumathi, and S. N. Deepa, *Introduction to fuzzy logic using MATLAB*. 2007.
- [10] J. M. Mendel, R. I. John, and F. Liu, "Interval Type-2 Fuzzy Logic Systems Made Simple," *Fuzzy Syst. IEEE Trans.*, vol. 14, no. 6, pp. 808–821, 2006.
- [11] K. Kim, H. Youn, S. Member, and Y. Kang, "Short-term load forecasting for special days in anomalous load conditions using neural networks," *IEEE Trans. Power Syst.*, vol. 15, no. 2, pp. 559–565, 2000.
- [12] J. M. Mendel, "On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set," *Inf. Sci. (Ny).*, vol. 172, no. 3– 4, pp. 417–430, 2005.


CERTIFICATE OF APPRECIATION

THIS CERTIFICATE IS AWARDED TO

MR. JAMAALUDDIN UDDIN

IN RECOGNITION OF HIS/HER ACTIVE PARTICIPATION AS **PRESENTER**

AT THE

HELD IN SANUR, BALI, INDONESIA, 9 -10 MAY 2016 COORGANISED BY

BALI, INDONESIA

FORD LUMBAN GAOL

KUNCORO WASTUWIBOWO GENERAL CHAIR

MP 2016

SATRIYO DHARMANTO IEEE INDONESIA SECTION CHAIR

