PAPER • OPEN ACCESS

The morphological response of the soybean growth (Glycine max (I)) until vegetative stage 3 on various intensities of light

To cite this article: A Miftahurrohmat and Sutarman 2018 IOP Conf. Ser.: Mater. Sci. Eng. 420012069

View the article online for updates and enhancements

IOP ebooks"

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

The morphological response of the soybean growth (Glycine max (1)) until vegetative stage 3 on various intensities of light

A Miftahurrohmat*, Sutarman
Program StudiAgroteknologi, Universitas Muhammadiyah Sidoarjo, Jl. Raya Candi no. 250, Sidoarjo, JawaTimur, Indonesia
*E-mail: agusmrohmat@umsida.ac.id

Abstract

This study aims to determine the effect on various intensity of light on the response of vegetative growth of local soybean to vegetative three stadia. Greenhouse experiments with 15 experimental units were prepared in a completely randomized design with treatments consisting of: without shade, 50, 60,70 , and 80% shade. The observed variables are plant height, number of leaves, number of branches, and stem diameter, root length, wet weight, and dry weight of stove. All data were analyzed by variance followed by All data were analyzed by variance followed by LSD test at 5%. The results showed that shading percentage had an effect on plant response on all growth variables until the end of vegetative- 3 stage. The higher the shade percentage, the more increase the growth of plant height and root length, but on the contrary decrease the growth of the number of leaves, in effect on the decrease of leaf number, branch number, stem diameter, and wet weight and dry weight of plant.

1. Introduction

At least 60% of soybean needs in Indonesia are fulfilled from imports [1]. To create independence in the procurement of soybeans, despite improving the production technology of soybean plants, it also need to develop the extension of soybean cultivation. In dry land utilization there are often significant obstacles, such as: soil acidity, low caption exchange capacity, availability of phosphate, water stress [2], and low light intensity, especially in intercropping cropping patterns utilizing land in plantation and agro forestry systems. Low light intensity will be a limiting factor in crop production [3], as it will affect the balance between water retrieval and water loss which is borne by the mechanism of opening and closing of stoma holes [4], [5]. The stoma hole will close in response to dehydration to prevent water loss and low intensity of light that falls onto the leaf surface which will ultimately lead to photosynthesis [6], [7], [8]. So far, local soybean varieties have been developed with shade up to 50% [9], but the information on how the original soybean growth response at higher shade intensity or up to 80% is unknown. For testing on high shade intensity as in plantation and agro forestry conditions needs to be done.

This study aims to determine the effect of light intensity on the response of local soybean vegetative growth until the three vegetative stadia.

2. Experimental Method

The seed surface of Gepak Kuning's soybean varieties is sterilized by dipping them into 50% alcohol solution for 5 seconds. After rinsing the compost with sterile water 3 times, the seeds are sieved. Meanwhile, $20 \times 10 \mathrm{~cm}$ polybags were prepared containing a mixture of soil and planting medium ($8: 1 \mathrm{v} . \mathrm{v}$). The sterile soybean seeds are planted into polybags that have been
placed under the aegis of para-net within the greenhouse with shade percentage according to treatment i.e. 0% (without shade), $50 \%, 60 \%, 70 \%$, and 80%, Each treatment is repeated three times to obtain 15 units of experiments.

Every day, from one day after planting (DAP) to 18 DAP at 15.00 WIB, an observation of the morphological response of plant vegetative growth to stage 3 . Plant height (cm) is measured from the root neck to the growing point. The number of branches is determined by counting the number of branches on the main stem of the sample plant. The number of leaves is determined by counting the number of perfect leaves on the sample plant. The diameter of the stem is measured by using the sliding term when the plant has entered the vegetative phase 3 (V3). Root length (cm) is determined by measuring the root length from the root neck to the root. The wet weight of the plant (gram) is determined by weighing the wet weight of the sample plant per treatment. The dry weight of the plant (gram) was determined by weighing the dry oven dry weight of each sample plant. All data of observation variable were analyzed by using variance and 5% LSD test to know the effect difference between the treatments on vegetative plant response.

To obtain supporting data, it was observed plant growing environment conducted every day (1-18 DAP) at $07.00,12.00$, and 15.00 WIB. The supporting data and their measurement tools are: (i) light intensity by using light meter; (ii) the temperature of the leaf using infrared thermometer, and (iv) the pH temperature planting medium with pH meter.

3. Results and Discussion

The mean of plant height in response to shade intensity differences in the initial phase to the end of vegetative-1 (7 and 11 DAP), the vegetative- 2 end phase (15 DAP), and the vegetative3 final phase are presented in table 1. It shows that at all time observed, the height of shaded plants higher than without shade.

The mean of number of leaves (12-18 DAP), number of branches (12-18 DAP), and stem diameter (18 DAP) can be seen in table 2. The mean of number of leaves is not different between without shade and with 70% of shade. The same thing happen on the number of branches (14 and 18 DAP) and stem diameter (18 DAP).

Table 1. The mean of plant height in response to shade intensity differences in the initial and the end of vegetative- 1 phases, the vegetative- 2 end phase, and the vegetative end- 3 phase (cm)

Treatment	Initial-end		End phase of vegetative-2 vegetative -1phase	End phase pf vegetative-3 18
	7 DAP	11 DAP	14.00 a	16.03 a
Without shade	5.86 a	10.33 a		15.50 ab
50% shade	7.13 ab	11.70 ab	17.93 ab	
60% shade	8.03 ab	12.66 ab	16.23 ab	18.67 b
70% shade	8.80 ab	13.40 bc	17.13 bc	19.83 bc
80% shade	10.13 b	15.16 c	19.03 c	21.56 c
LSD 5\%	3.24	2.44	2.63	2.34

Means followed by the same letter in the same row are not significantly different at $\mathrm{p}<0.05$.

Table 2.The mean of number of leaves and branches (12-18 DAP) and stem diameter (18 DAP) in response to shade intensity differences

Treatment	Average number of leaves			Average number of branches			stemdiameter($\mathrm{cm})$18 DAP
	12 DAP	14 DAP	18 DAP	12 DAP	14 DAP	18 DAP	
Without shade	5.0 b	5.0 b	8.0 b	3.00 b	3.13 b	8.12 b	0.25 b
50\% shade	3.0 a	5.0 b	8.0 b	2.33 a	2.66 b	8.27 b	0.24 b
60\% shade	3.0 a	4.0 b	7.0 b	2.33 a	3.13 b	8.17 b	0.23 b
70\% shade	2.0 a	4.0 b	7.0 b	2.13 a	2.66 b	8.12 b	0.21 ab
80\% shade	2.0 a	2.0 a	5.0 a	2.13 a	2.27 a	6.27 a	0.17 a
LSD 5\%	1.99	1.99	1.99	0.66	0.66	1.99	0.04

Means followed by the same letter in the same row are not significantly different at $\mathrm{p}<0.05$.
The same result was indicated by the average root length. but different on the average wet weight and dry weight of plants at 18 DAP (table 3). Up to 70% shade. the root length is equal to no shade and will increase in the shade of 80%.

Table 3.The mean of root length. wet weight. and dry weight of plants at 18 DAP in response to shade intensity differences

Treatment	root length (cm)	wet weight ofplants (gr)	dry weight of plants (gr)
Without shade	20.36 a	8.51 d	0.95 c
50% shade	22.76 ab	6.57 c	0.62 b
60% shade	23.90 ab	5.00 bc	0.55 b
70% shade	28.50 bc	3.22 ab	0.46 ab
80% shade	32.70 c	2.70 a	0.23 a
LSD 5\%	6.16	1.90	0.24

Means followed by the same letter in the same row are not significantly different at $\mathrm{p}<0.05$.
The results oflight intensity measurement (lux) and air temperature under paranet shade and leaf temperature are presented in table 4.

Table 4. Average light intensity. temperature under para-net shade. and leaf temperature

Environment Variables	Shade Level				
	P0	P 1	P 2	P 3	P 4
Light intensity (Lux)	26,366	18,360	17,056	16,039	14,999
Temperature inside shade $\left({ }^{\circ} \mathrm{C}\right)$	-	29.9	29.2	28.5	27.7
Leaf temperature $\left({ }^{\circ} \mathrm{C}\right)$	31.0	29.2	28.6	28.1	27.4

Note: we measure every morning. day and evening; the average temperature outside shade is $34{ }^{\circ} \mathrm{C}$; pH of planting media is 7.0 ; P0: without shade. $\mathrm{P} 1: 50 \%$ shade. $\mathrm{P} 2: 60 \%$ shade. P 3 : 70% shade. P4: 80\% shade.

On the shade treatment the crown and plant parts at the above ground level have the higher average height and longer root length than those without shade treatment. The intensity and duration of irradiation and water saturation affects the formation of root cuttings [10], [11]. Dark conditions will increase the formation of root meristems [12]. There is an interaction between light and auxin in which light affects either synergistically or antagonistically to the growth regulator of auxin and cytokines related to root growth [13],[14]. Auxin greatly affects the growth of the stem [15], while the light will affect the level of the induction auxin both regarding transport and its metabolism involving photo-oxidation [16], [17], [18]. Etiolation is strongly influenced by the level of sucrose [19]. In this case the transition phase growth from young plants to mature plants is stimulated by high indigenous sucrose [20]. Sucrose plays an important role in the growth of the juvenile phase tissue [21]. Conditions with low light intensity in this experiment ($14,999-18,360$ lux) inhibited the rate of photosynthesis and attributed to total sugar useful for plant growth. Despite high root growth and canopy length, however, the wet weight and dry weight of plant stalks in the treatment under the shade is relatively small compared with no shade (table 3). Elevation of crown and root tissue indicates an increase in CO_{2} storage in vascular bundle cells. High CO_{2} levels combined with low light intensity levels can improve light photosynthetic reactions [22], [23] and improve the efficiency of light use in photosynthesis [24], [25]. High CO_{2} levels can increase carbon uptake by increasing the efficiency of photosynthesis under dynamic light conditions [26], [24].

4. Conclusion

The percentage of shade affected the plant response on all growth variables until the end of the vegetative- 3 stage. Higher the shade percentage, better on the growth of plant height and root length. On the contrary, lesser the shade percentage will decreasing the growing leave number, that will affecting leaf number, branch number, stem diameter, and wet weight and dry weight of plant. Soya plants with shade up to 70% are able to provide high growth response, stem diameter, and same number of leaves with no shade.

5. Acknowledgements

The authors would like to thank to the Ministry of RISTEKDIKTI for the Grant (Program Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)).

6. References

[1] BadanPusatStatistik (BPS). 2016Luas panen kedelai menurut provinsi (ha). 19932015". 2016https://www.bps.go.id/ linkTableDinamis/view/id/870retrieved May 1. 2017
[2] Katadata. 2017. Pemanfaatan 36.8 juta hektare lahan pertanian belum maksimalhttp://katadata.co.id/berita/2016/12/07/jokowi-pemanfaatan-368-juta-hektare-1 ahan-pertanian-belum-maksimal retrieved April22. 2017
[3] Poorter.H.. \& Nagel. O. 2000 The role of biomass allocation and growth of Betula pendula and B. Pubescens seedlings For Ecol Manage227 122-134
[4] Pantin.F..Simonneau.T..\&Muller.B. 2012 Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogenyNew Phytologist196 349-366
[5] Giday. H..Fanourakis.D.. Kjaer.H.K.. Fomsgaard.I.S.. \&Ottosen.C. 2014 Treshold respons of stomatal closing ability to leaf abscisic acid concentration during growth J Exp Botany 65 4361-4370
[6] Perrone.I..Pagliarani.C.. Lovisolo. C.. Chitarra.W.. Roman. F.. \& Schubert.A. 2012 Recovery from water stress affect grape leaf petiole transcriptome Planta 23513831396
[7] Urli.M.. Porte.A.J.. Cochard.H.. Guengant.Y.. Burlett. R.. \& Delzon. S. 2013 Xylem embolism threshold for castropic hydraulic failure in angiosperm trees Tree physiology33 672-683
[8] Brodersons. C.R.. \& McElrone. A.J. 2013 Maintenance of xylem network transport capacity: a riview of embolism repair in vascular plantsFrontiers in Plant Science 4108
[9] BalitbangPertanian. $2016 . \quad$ Varietas Dena $\quad 1$. BadanPenelitiandanPengembanganPertanianKementrianpertanianhttp://new.litbang.pert anian.go.id/varietas/1092/ retrieved April $9^{\text {th }} 2017$
[10] Daud. N.. Faizal. A..\&Geelen. D. 2013 Adventitious rooting of Jatropha curcasL. is stimulated by phloroglucinol and by red LED lightIn Vitro Cell Dev Biol Plant49183189
[11] Voesenek. L.A.C.J.. \&Sasidharan. R. 2013 Ethylene- and oxygen signalling- drive plant survival during floodingPlant Biol15426-435
[12] Klopotek.Y.. Haensch. K.T.. Hause. B.. Hajirezaei. M.R.. \&Druege. U. 2010 Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the lightJ Plant Physiol167547-554
[13] Fett-Neto. A.G.. Fett. J.P.. Goulart. L.W.V.. Pasquali. G.. Termignoni. R.R.. \&Ferreira. A.G. 2001Distinct effects of auxin and light on adventitious root development in Eucalyptus salignaand Eucalyptus globulesTree Physiol21457-464
[14] Wynne.J..\& McDonald. M. 2002 Adventitious root formation in woody plant tissue: influence of light and indole-3-butiricacid (IBA) on adventitious root induction in Betula pendulaIn Vitro Cell Dev Biol Plant38210-212
[15] Agulló-Antón.M.A.. Sánchez-Bravo. J.. Acosta. M.. Druege. U. 2011 Auxins or sugars: what makes the difference in the adventitious rooting of stored carnation cuttings? J Plant Growth Regul30100-113
[16] Normanly. J.. Slovin. J.P.. \&Cohen. J.D.2004Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis. signal transduction. actionKluwer Academic Publishers Dordrecht. pp 36-62
[17] Ding. Z.. Galván-Ampudia. C.S.. Demarsy. E.. Langowski. L.. Kleine-Vehn. J.. Fan. Y. 2011 Light-mediated polarization of the PIN3 auxin transporter for the phototropic
response in ArabidopsisNat Cell Biol13447-452
[18] Sassi. M.. Lu. Y.. Zhang. Y.. Wang. J.. Dhonukshe. P.. \&Blilou. I.2012COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1-and PIN2-dependent auxin transport in ArabidopsisDevelopment 1393402-3412
[19] Price. J.. Laxmi. S.A.. Martin. S.K.. Jang.\&J.C. 2004Global transcription profiling reveals multiple sugar signal transduction mechanisms in ArabidopsisPlant Cell1621282150
[20] Wu. G..\&Poethig. R.S. 2006 Temporal regulation of shoot development in Arabidopsis thalianaby miR156 and its target SPL3. Development 1333539-3547
[21] Massoumi. M.. Krens. F.A.. Visser. R.G.F.. De Klerk. G-J.M. 2017. Etiolation and flooding of donor plants enhance the capability of Arabidopsis explants to root Plant Cell Tiss Organ Cult130531-541 DOI 10.1007/s11240-017-1244-1
[22] Wurth. M.K.R. Winter. K.. \& and Korner. C. 1998 In situ responses to elevated CO2. in tropical forest understorey plant. Func Ecol. 12 886-895
[23] DeLucia. E.H.. \&Thomas. R.B. 2000 Photosynthetic responses to CO_{2} enrichment of four hardwood species in a forest understorey Oecologia 12211-19
[24] Tomamitsu. H.. \& Tang.Y. 2012 Elevated CO_{2} differentially affects photosynthetic induction response in two Populus species with different stomatal behavior Oecologia169 869-878
[25] Naumburg. E..\& Ellsworth.D.S. 2000Photosynthesis sunfleck utilization potential of understory saplings growung under elevated CO_{2} in FACEOecologia 122163-174
[26] Holisova.P.. Zitova. M.. Klem. K..\&Urban.O. 2012 Effect of leevated carbondioxide concentration on carbon assimilation under fluctuating light"J Environ Qual.4119311938

