Substitution of Ga on R₂Fe₁₇ Compounds: Structural and Magnetic Modifications

Suhas Subramani, Dr. Srilatha Y

Dayananda Sagar Academy of Technology and Management, Bangalore, Karnataka, India

ABSTRACT

Rare-earth transition-metal intermetallics, specifically R₂Fe₁₇, are exciting options for permanent magnet applications because they offer high magnetization at a relatively low cost compared to However, Nd₂Fe₁₄B. the inherent Curie temperature (T_C) and magneto crystalline anisotropy (MCA) of R₂Fe₁₇ fall short for high-performance devices. One effective strategy to improve stability, adjust anisotropy, and alter exchange interactions is to substitute Fe with non-magnetic elements like Ga. This paper takes a closer look at the structural and magnetic impacts of Ga substitution in R₂Fe₁₇, referencing various studies from the literature. It particularly highlights the stabilization of crystal structure, enhancement of Curie temperature, transitions in anisotropy, and how carbides contribute to better performance.

IJTSRD

International Journal of Trend in Scientific Research and Development How to cite this paper: Suhas Subramani | Dr. Srilatha Y "Substitution of Ga on R2Fe17 Compounds: Structural and Magnetic Modifications"

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-5,

October 2025, pp.797-799, URL: www.ijtsrd.com/papers/ijtsrd97626.pdf

Copyright © 2025 by author (s) and International Journal of Trend in Scientific Research and Development

Journal. This is an Open Access article distributed under the

terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

I. INTRODUCTION

Rare-earth transition-metal (RE–TM) intermetallic compounds are a fascinating group of functional materials that blend the unique 4f-electron magnetism of rare earth elements with the more mobile 3d-electron magnetism found in transition metals [1], [2]. A notable example is the R₂Fe₁₇ compounds (where R represents a rare earth), which can crystallize in either the rhombohedral Th₂Zn₁₇-type or the hexagonal Th₂Ni₁₇-type structures. These compounds boast impressive saturation magnetization but face challenges like relatively low Curie temperatures (T_C) and limited magnetocrystalline anisotropy [3], [4].

To tackle these issues, researchers have delved into substitutional alloying. Gallium (Ga), a non-magnetic element with a larger atomic radius than iron, alters the Fe–Fe exchange pathways and helps stabilize the structure while also influencing the electronic density of states [5], [6]. Moreover, introducing carbon (C) into the mix not only boosts stability but also elevates T_C [4]. As a result, Ga-substituted R₂Fe_{17-x}Ga_x and R₂Fe_{17-x}Ga_xC systems have become quite appealing from a technological standpoint.

This paper aims to bring together and analyze previous experimental results to shed light on the role of Ga in R₂Fe₁₇, focusing on aspects like structural stabilization, magnetic ordering, anisotropy transitions, and potential applications.

II. Crystal Structure and Phase Stability

The parent R₂Fe₁₇ compounds crystallize in either:

- ➤ Rhombohedral Th₂Zn₁₇-type (space group R-3m), or
- ➤ Hexagonal Th₂Ni₁₇-type (space group P6₃/mmc).

The stability of these polymorphs strongly depends on R-site ionic radius and synthesis conditions [1], [2]. Ga substitution plays a dual role:

- 1. Lattice Expansion: Due to larger atomic radius of Ga, the unit cell expands, reducing Fe–Fe distances [6].
- **2. Phase Stabilization:** Ga stabilizes the Th₂Zn₁₇-type structure, suppressing disorder at high substitution levels [5].

Khazzan et al. [9] and Shen [4] demonstrated that Ga incorporation suppresses structural instabilities,

particularly when coupled with C interstitials. In Dy₂Fe₁₆Ga, further stabilization was achieved by cosubstitution with Zr [7].

III. Magnetic Properties of Ga-Substituted R₂Fe₁₇:

A. Curie Temperature (T_C)

The low Curie temperature (T_C of about 470 K for Y₂Fe₁₇) really limits its practical use. When you swap out some iron (Fe) for gallium (Ga), you can actually boost T_C to an optimal level because of the changes in Fe–Fe exchange interactions [6]. For rare earth elements like Gd or Tb, Zhang [3] found that T_C can jump from around 470 K to about 600 K with a Ga substitution of roughly 2 to 3. But be careful—if you add too much Ga, it can weaken the exchange coupling and cause T_C to drop again when x exceeds 3.

B. Saturation Magnetization (M_s)

When Ga is added, it reduces the number of magnetic Fe atoms, which in turn lowers the M_s as x increases [4], [6]. However, the enhancements in anisotropy and T_C could balance out this decrease, making it worthwhile for certain applications

C. Magnetocrystalline Anisotropy (MCA)

Anisotropy plays a vital role in the behavior of permanent magnets. When gallium (Ga) is substituted, it can trigger spin reorientation transitions in specific R₂Fe₁₇ compounds [5]. In the case of Ho₂Fe_{17-x}Ga_x, the anisotropy shifts from a planar to a uniaxial configuration as the amount of Ga increases [6]. According to a report in Applied Physics Letters [5], Ga modifies the crystalline electric field at the R-site, which has a significant impact on the magnetocrystalline anisotropy (MCA) constants.

D. Effect of Carbon Interstitials

Carburization further enhances T_C by strengthening Fe–C–Fe exchange bridges [4]. Zhang [3] showed that $R_2Fe_{17-x}Ga_xC$ (R = Gd, Tb) achieves higher thermal stability compared to unsubstituted compounds.

IV. Theoretical Insights and Electronic Structure:

Recent studies on electronic structures indicate that substituting Ga leads to a decrease in direct Fe–Fe exchange by widening the lattice spacing. However, this change also diminishes the competing antiferromagnetic interactions [1], [8]. This delicate balance helps to explain the increase in T_C observed up to a certain critical x. First-principles studies, particularly those summarized in [1], suggest that Ga tends to occupy

the 9d and 18h Fe sites, which play a crucial role in magnetism.

V. Technological Implications

The substitution of Ga in R₂Fe₁₇ compounds provides:

- ➤ Improved Curie temperatures (500–600 K range).
- ➤ Stabilization of the Th₂Zn₁₇ structure.
- Tunable anisotropy, with potential planar-touniaxial transitions.
- > Enhanced thermal stability with Ga+C co-doping.

However, challenges remain:

- ➤ Reduction in saturation magnetization limits maximum energy product.
- ➤ Phase purity and control of site occupation are synthesis-sensitive.
- ➤ Performance is still below commercial Nd–Fe–B, though cost and abundance favor R₂Fe₁₇-based systems.

VI. Conclusion

The replacement of Ga in R₂Fe₁₇ intermetallic compounds has proven to be a smart approach for stabilizing the crystal structure, boosting the Curie temperature, and adjusting the magnetocrystalline anisotropy. However, this enhancement often comes at the cost of overall magnetization, as magnetic Fe atoms are swapped out for nonmagnetic Ga. Despite this trade-off, Ga is essential for improving thermal stability and fine-tuning the exchange interactions, making these compounds more viable for applications where maintaining structural integrity and high-temperature performance is key.

Moreover, when Ga substitution is paired with the addition of carbon atoms, the resulting synergistic effect creates stronger Fe–C–Fe exchange bridges. This not only raises the Curie temperature but also bolsters the stability of the intermetallic phase. This combined substitution strategy paves the way for developing cost-effective and thermally stable rare-earth intermetallics that could be promising candidates for magnetic devices.

Looking ahead, there's potential for even greater advancements through multi-element co-doping. For instance, the simultaneous substitution of Ga and Zr has been shown to enhance lattice stability and improve anisotropy control compared to using Ga alone. These strategies highlight how thoughtfully designed combinations of dopants can help overcome the limitations associated with single-element substitutions.

Additionally, merging experimental efforts with computational modeling and electronic structure analysis will be crucial for pinpointing optimal substitution levels, clarifying where Ga occupies sites, and predicting the magnetic behavior of these

[11]

compounds with greater accuracy. By blending theoretical insights with practical synthesis and characterization, researchers can create R₂Fe₁₇-based materials that boast customized magnetic properties.

When it comes to Ga-substituted R_2Fe_{17} intermetallics, especially when paired with other stabilizing elements or interstitials, they really shine as a promising option for alternative permanent magnet materials. These materials strike a great balance between thermal stability, structural strength, and cost-effectiveness, making them potentially invaluable for future applications in magnetics and energy.

References:

- [1] Magnetic properties of YGdFe_{17- x} (Ga, Al) x (x= 0–8), R. Srilatha, V. S. Murty, G. Markandeyulu, *J. Appl. Phys.* 97, 10M503 (2005), https://doi.org/10.1063/1.1847291
- [2] Y. Srilatha, R. Triveni, G. Markandeyulu, The structural and magnetic studies on off-stoichiometric Sm2Fe17-xCoxGa, Journal of Magnetism and Magnetic Materials, Volume 630, 2025, 173382, ISSN 0304-8853, https://doi.org/10.1016/j.jmmm.2025.173382.
- [3] Triveni, R., Srilatha, Y., Somani, P.R. *et al.* [10] Facile synthesis of a NiO-based Fe₂O₃:SiO₂- in Sci rGO nanocomposite thin film and its arch a application as a highly sensitive hydrogen sensor. *J Mater Sci: Mater Electron* 36, 909 (2025). https://doi.org/10.1007/s10854-025-2456-64 14881-1
- [4] K.B. Anoop Baby, R. Srilatha, Magnetostriction studies of thin nickel strips in perpendicular and parallel configurations, Materials Today: Proceedings, Volume 49, Part 3, 2022, Pages 690-692, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.05.173
- [5] R. Srilatha, Ravi, G. Markandeyulu and V. S. Murty, "Effect of Co on the Magnetic Properties of YGdFe_{17-x}Co_xGa," in *IEEE Transactions on Magnetics*, vol. 42, no. 10, pp. 2918-2920, Oct. 2006, https://doi.org/10.1109/TMAG.2006.879892

- [6] The structural and magnetic studies on offstoichiometric YGdFe_{17-x}Co_xSi compounds, Yallapragada Srilatha, Kuntla Vagdevi, Revathi Naidu, *AIP Conf. Proc.* 3263, 160076 (2025), https://doi.org/10.1063/5.0261305
- [7] Agrosagenet: Self-Adaptive Intelligence to Address Global Food Demand and Crop Disease Detection and Diagnosis for Sustainable Precision Agriculture, (2025). *International Journal of Environmental Sciences*, 857-864. https://theaspd.com/index.php/ijes/article/view/7372.
- [8] R₂Fe₁₇ Intermetallics: A Review, Suhas Subramani, Srilatha. Y, DOI: https://doi.org/10.5281/zenodo.17120916
 - Suhas Subramani | Dr. Srilatha Y "Green Nanotechnology: Sustainable Synthesis, Environmental Applications, and Future Perspectives" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-9 | Issue-5, October 2025, pp.287-292, https://www.ijtsrd.com/papers/ijtsrd97486.pdf
 - Stoichiometric Studies on Effect of Co on the Magnetic properties of YGdFe₁₇Si, R. Srilatha., ZKG INTERNATIONAL, 87-93, Volume IX, Issue I , Jan 2024, Ramakuru, URL:https://www.researchgate.net/publication/383946385_STOICHIOMETRIC_STUDIES_ON_EFFECTOF_COONTHEMAGNETICPR OPERTIES_OFYGDFE_17_SI
 - G. Kowsalya, Enoch Arulprakash, Srilatha. Y, Rathi M, Ramalingam M, Jayanthi R, & Ali Bostani. (2025). Energy-Aware Physical Synthesis of Deep Neural Networks for Edge-AI Applications in Robotics and VLSI Systems. *Journal of VLSI Circuits and Systems*, 7(1), 219–227.

https://vlsijournal.com/index.php/vlsi/article/view/242/171