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ABSTRACT 

Magnetic skyrmions are fascinating, particle-like spin textures that 
are topologically nontrivial, and they've been drawing a lot of 
attention for their potential in both fundamental physics and low-
energy spintronics applications. In this paper, we take a closer look at 
the theoretical underpinnings of skyrmions, the various mechanisms 
that help stabilize and control them-like the Dzyaloshinskii–Moriya 
interaction, magnetic anisotropy, and dipolar interactions. We also 
explore how these skyrmions are realized and imaged experimentally, 
their dynamics when driven by current (including the skyrmion Hall 
effect), and the different methods for nucleation, annihilation, and 
manipulation. Additionally, we discuss innovative device concepts 
such as racetrack memory and logic. Our review synthesizes findings 
across different material classes-from noncentrosymmetric bulk 
chiral magnets to interfacial multilayers and ferri/antiferromagnets-
and highlights the key challenges and future directions in this 
exciting field. Plus, we've included a comprehensive reference list 
with over 30 sources that represent the breadth of research in this 
area. 
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I. INTRODUCTION 

Magnetic skyrmions, those fascinating topological 
spin textures, were first theorized in 
noncentrosymmetric magnets and have since been 
spotted in various material classes through 
experimental work. Their unique swirling 
magnetization and nonzero topological charge give 
them remarkable stability against disturbances, plus 
they can be easily manipulated using electric currents 
and fields. This makes them exciting candidates for 
future memory and logic devices that are both dense 
and energy-efficient. In this manuscript, we delve into 
the physical principles that underpin skyrmions, 
explore the experimental methods used to observe 
and manipulate them, and take a look at the latest 
developments in skyrmion-based device proposals. 

II. Theoretical Foundations 

A. Topology and the Skyrmion Number 

A skyrmion found in a two-dimensional magnetic 
film is defined by its topological charge, also known 
as the skyrmion number. 

 

 
where �(�,�) represents the unit magnetization field. 
The integer values of �sk signify topologically unique 
spin configurations that can’t be smoothly changed 
into one another without hitting singularities. 

B. Energy Terms and Stabilization Mechanisms 

The micromagnetic energy functional usually takes 
into account several factors: exchange interactions, 
magnetic anisotropy, Zeeman energy, dipolar 
interactions, and the chiral Dzyaloshinskii–Moriya 
interaction (DMI). The interplay between these 
elements is what decides if skyrmions are in a 
metastable state or if they achieve thermodynamic 
stability. Generally, we can identify two main types 
of skyrmions: Bloch-type, which are typically found 
in bulk chiral magnets, and Néel-type, which are 
stabilized at interfaces thanks to interfacial DMI. 

C. Analytic and Numerical Models 

Analytic methods like variational ansätze and 
collective-coordinate models offer valuable insights 
into the size and behavior of skyrmions. However, for 
precise predictions, we usually turn to micromagnetic 
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simulations that solve the Landau–Lifshitz–Gilbert 
(LLG) equation, often enhanced by spin-transfer or 
spin–orbit torque terms. 

III. Materials and Experimental Realizations 

A. Bulk Chiral Magnets 

Skyrmion lattices were initially identified in 
noncentrosymmetric B20 compounds, like MnSi and 
FeGe, through techniques such as neutron scattering 
and Lorentz transmission electron microscopy 
(TEM). The thermal and magnetic-field phase 
diagrams reveal skyrmion-lattice pockets that are 
stabilized by bulk Dzyaloshinskii-Moriya interaction 
(DMI) at finite temperatures. 

B. Ultrathin Films and Multilayers 

Interfacial Dzyaloshinskii-Moriya interaction (DMI) 
in heavy-metal/ferromagnet multilayers, like Pt/Co 
and Pt/CoFeB, allows for the creation of room-
temperature isolated skyrmions that are stable at zero 
or low magnetic fields and have diameters under 100 
nm. By carefully engineering materials-through 
stacking, selecting the right heavy metal, adjusting 
thicknesses, oxidation, and interfacial layers-we can 
fine-tune DMI, perpendicular magnetic anisotropy 
(PMA), and damping. 

C. Ferri- and Antiferromagnets; Heuslers and 

Oxides 

Ferrimagnetic alloys, like GdFeCo, and 
antiferromagnets have the potential to host skyrmion-
like textures that exhibit a reduced or even 
nonexistent skyrmion Hall effect, which is great for 
device movement. Exciting new materials, such as 
Heusler compounds and oxides, expand the range of 
options and allow for the creation of antiskyrmions 
and other chiral textures. 

IV. Imaging and Characterization Techniques 

When it comes to imaging skyrmions, there are 
several key techniques to consider. These include 
Lorentz transmission electron microscopy (LTEM), 
spin-polarized scanning tunneling microscopy (SP-
STM), magnetic force microscopy (MFM), X-ray 
magnetic circular dichroism photoemission electron 
microscopy (XMCD-PEEM), and spin-resolved soft 
X-ray tomography. Additionally, reciprocal-space 
probes like small-angle neutron scattering (SANS) 
can help uncover the order of skyrmion lattices. 

V. Dynamics and Manipulation 

A. Current-Driven Motion and the Skyrmion Hall 

Effect 

Skyrmions can be set in motion by spin-transfer 
torque (STT) or spin–orbit torque (SOT) that comes 
from charge currents flowing through nearby heavy-
metal layers. Thanks to their unique topological 
properties, they experience a sideways deflection 

known as the skyrmion Hall effect, which is 
influenced by both the skyrmion charge and damping. 
To reduce the Hall angle, researchers are exploring 
various strategies, such as using antiferromagnetically 
coupled bilayers, ferrimagnets that are close to 
compensation, or synthetic antiferromagnets. 

B. Nucleation and Annihilation 

Controlled nucleation methods that have been tested 
in experiments include techniques like local spin-
polarized current injection (SP-STM), nano-contact 
current pulses, magnetic field gradients, and defect- 
or geometry-assisted nucleation, such as notches and 
holes. Additionally, ultrafast optical pulses are part of 
the mix. Researchers are actively exploring energy 
barriers and the role of Bloch points in annihilation 
processes. 

C. Thermal Effects and Stability 

The lifetimes of skyrmions are influenced by the 
material properties and temperature; thermal 
activation can lead to spontaneous collapse or cause 
them to become detached from defects. It's essential 
to engineer pinning landscapes and ensure material 
uniformity for the reliable operation of devices. 

VI. Device Concepts and Applications 

Proposed device concepts exploit small footprint, 
topological protection, and low current-driven 
mobility of skyrmions: 
 Racetrack memory: skyrmions represent bits 

moved along nanotracks by SOTs/STTs and read 
by magnetoresistive sensors. 

 Logic and neuromorphic elements: interactions, 
merging, and repulsion of skyrmions enable 
nonconventional computation schemes. 

 Microwave and magnonic devices: skyrmion 
resonances and magnon–skyrmion interactions 
enable tunable microwave elements. 

Key challenges include deterministic nucleation at 
device-relevant densities, suppression of undesired 
skyrmion Hall deflection, reproducible pinning and 
depinning, and integration with CMOS. 

VII. Theoretical and Computational Advances 

Recent theoretical work is diving into the energetics 
of skyrmions, exploring three-dimensional textures 
like tubes and bobbers, and examining how quantum 
and thermal effects influence small skyrmions. It also 
looks at their interactions with magnons and how to 
optimize them for low-power use. To tackle these 
complex issues, researchers are increasingly using 
multiscale modeling that combines atomistic, 
micromagnetic, and continuum approaches. 

VIII. Challenges and Open Questions 

Some of the key challenges we face include ensuring 
reliable operation at room temperature in scalable 
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materials, reducing randomness in nucleation and 
readout processes, managing the interactions between 
skyrmions and defects, and gaining a deeper 
understanding of quantum effects as skyrmion sizes 
shrink down to just a few nanometers. 

IX. Conclusion 

Magnetic skyrmions are an exciting area of research 
that sits at the crossroads of topology, materials 
science, and spintronics. Thanks to rapid 
advancements in experiments-especially with thin-
film heterostructures and the ability to stabilize them 
at room temperature-we're getting closer to making 
skyrmion-based devices a reality. However, tackling 
the challenges related to materials and control is still 
a key focus for both current and future research. 
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