
Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 56 -

OPTIMIZING FINANCIAL WORKLOAD PIPELINES: COMPARATIVE

STUDY OF DISTRIBUTED QUERY PROCESSING IN TERADATA,

HIVE SQL, AND PYSPARK FOR ENTERPRISE-SCALE RISK

MODELING APPLICATIONS

Kwame Mensah
Department of Computer Science, University of Ghana, Accra, Ghana

Dr. Sofia Almeida
Department of Information Systems, University of Porto, Porto, Portugal

Dr. Jonathan Reed
Department of Computer Science, University of Cambridge, Cambridge, United Kingdom

ABSTRACT ARTICLE HISTORY

The increasing complexity of enterprise-scale financial risk
modeling has created an urgent demand for high-
performance, scalable, and resilient data processing pipelines.
Banks and financial services institutions (BFSI) must
integrate vast volumes of structured and unstructured data,
ranging from transactional records to regulatory disclosures,
under stringent time and compliance constraints. Traditional
approaches often struggle with latency, scalability, and
governance challenges, making distributed query processing a
critical enabler of modern risk analytics.
This article presents a comparative study of Teradata, Hive
SQL, and PySpark as platforms for distributed query
processing in large-scale financial workload pipelines.
Teradata is evaluated for its mature parallel database
capabilities and integration with legacy BFSI systems; Hive
SQL is assessed for its Hadoop-based batch processing
efficiency and schema-on-read flexibility; and PySpark is
analyzed for its in-memory distributed processing, machine
learning integration, and adaptability to hybrid cloud
deployments.
Through the lens of enterprise-scale risk modeling
applications—including credit risk scoring, Basel III stress
testing, and Monte Carlo simulations—the study highlights
trade-offs across performance, scalability, fault tolerance,

 Submitted/Received: 03 Jun 2024
First Revised: 09 Jul 2025
Accepted: 19 Jul 2025
Publication Date: 29 Aug 2025

KEYWORDS:

Journal homepage: https://manuscriptology.org/index.php/AIDR

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 57 -

data governance, and regulatory compliance. Experimental
benchmarks and workload scenarios are discussed to
illustrate where each platform demonstrates comparative
strengths, such as Teradata in structured OLAP-style
workloads, Hive SQL in cost-effective batch analytics, and
PySpark in real-time iterative modeling.
The findings underscore that no single platform universally
dominates; rather, enterprises achieve optimal results by
orchestrating hybrid pipelines that combine platform
strengths based on workload profiles, latency requirements,
and compliance obligations. The article concludes with
strategic insights on how BFSI organizations can align
technology choices with business imperatives, ensuring faster
risk analytics, regulatory readiness, and long-term
architectural flexibility in the evolving landscape of financial
data engineering.

© 2025 https://manuscriptology.org

https://manuscriptology.org/

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 58 -

1. Introduction

The financial services industry is experiencing a transformative shift driven by big data and advanced risk
modeling requirements. Regulatory frameworks such as Basel III, IFRS 9, and CCAR stress testing have
intensified the need for highly accurate, transparent, and timely risk assessments. Banks and other financial
institutions must now process massive volumes of structured and unstructured data, ranging from granular
transactional records to market, credit, and operational datasets, to generate actionable insights. This demand
has propelled the adoption of distributed data processing frameworks capable of handling enterprise-scale
workloads with low latency and high reliability.

Despite advances in distributed computing, legacy workload infrastructures continue to face significant
challenges. Traditional data warehouses and batch processing pipelines often struggle with scalability, query
optimization, and execution costs, especially when supporting complex financial risk modeling applications
such as Monte Carlo simulations, portfolio stress testing, and credit risk scoring. These limitations can lead to
delays in risk reporting, increased operational costs, and potential non-compliance with regulatory timelines,
highlighting the need for optimized distributed query processing solutions.

This article focuses on Teradata, Hive SQL, and PySpark as representative distributed query engines for
financial workloads. Teradata offers a mature parallel database environment optimized for structured OLAP
queries, while Hive SQL provides cost-effective batch processing over Hadoop ecosystems with schema-on-
read flexibility. PySpark leverages in-memory distributed computing, allowing for iterative, machine-learning-
enhanced risk modeling in near real-time. Evaluating these platforms provides practical insights into
performance, scalability, and operational efficiency in enterprise risk analytics pipelines.

The objective of this study is to establish a comparative framework that assesses each platform across
multiple dimensions, including architecture, query execution efficiency, operational cost, fault tolerance,
and governance compliance. By systematically analyzing these factors, the research contributes to both
academic and industry understanding of how to optimize financial workload pipelines. The outcomes aim to
guide BFSI organizations in selecting or orchestrating hybrid architectures that balance performance, cost, and
regulatory requirements, ultimately enabling faster, more reliable, and compliant risk modeling operations at
scale.

2. Background and Motivation

Financial institutions rely on complex, large-scale risk modeling pipelines to evaluate and manage exposure
across credit, market, and liquidity domains. These pipelines are critical for regulatory compliance, strategic
decision-making, and operational resilience. Among the most computationally intensive tasks are Monte Carlo
simulations, which require thousands to millions of iterations to model potential market scenarios and stress
events. Similarly, credit risk scoring, liquidity stress testing, and value-at-risk calculations generate massive
datasets that must be processed, transformed, and aggregated efficiently.

Traditionally, these pipelines depend heavily on SQL-based transformations and distributed execution
engines. Structured data from transactional systems, market feeds, and customer portfolios is ingested,
cleansed, and transformed before risk models can be applied. In practice, this often involves iterative queries,
multi-stage joins, and aggregation operations, which must execute reliably under strict performance
constraints. The combination of data volume, query complexity, and regulatory reporting timelines makes
efficient distributed query processing a foundational requirement for modern BFSI operations.

However, enterprises face several critical challenges in managing these pipelines. Query optimization
bottlenecks frequently arise due to complex joins, nested queries, or skewed data distribution, leading to
extended execution times and potential delays in risk reporting. Organizations must also navigate the trade-offs
between on-premises massively parallel processing (MPP) systems, such as Teradata, and cloud-native
open-source frameworks, including Hive SQL and PySpark. While MPP systems offer mature, optimized
execution for structured workloads, they often incur high capital and operational costs. Conversely, cloud-native

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 59 -

solutions provide elastic scaling, reduced infrastructure overhead, and integration with modern data lakes, but
may require additional tuning to meet enterprise SLAs and compliance requirements.

A further consideration is the balance between cost, performance, and compliance. Enterprises must
optimize pipelines to deliver rapid results while maintaining regulatory adherence, data governance, and security
standards. High-performance systems may accelerate execution but drive up infrastructure costs, while cost-
efficient cloud solutions may face latency or operational variability. Additionally, evolving regulations demand
that every stage of the pipeline is auditable and transparent, adding another layer of complexity to
architectural decisions.

This context underscores the importance of systematically evaluating distributed query processing frameworks.
Understanding the strengths, limitations, and trade-offs of Teradata, Hive SQL, and PySpark enables BFSI
organizations to design pipelines that meet the dual imperatives of operational efficiency and regulatory
compliance, while supporting the scale and complexity of modern financial risk modeling workloads.

3. Distributed Query Processing Paradigms

Modern financial risk modeling workloads demand distributed query processing frameworks that can efficiently
handle large-scale data transformations, iterative computations, and complex analytics. Three prominent
paradigms—Teradata, Hive SQL, and PySpark—offer distinct approaches to distributed execution, each
with architectural trade-offs suited to different workload characteristics.

Teradata

Teradata represents a mature massively parallel processing (MPP) database optimized for structured, high-
volume analytics. Its architecture tightly couples storage and compute, allowing for optimizer-driven query
execution that automatically partitions data and distributes processing across nodes. Teradata excels in
complex OLAP workloads, supporting multi-join queries, aggregation-heavy operations, and large-scale
transactional analytics. Its schema-on-write model ensures data is rigorously structured upon ingestion,
providing predictability and strong data governance—an advantage for regulated BFSI environments where
auditability and compliance are critical. However, this maturity comes with constraints on flexibility and
higher infrastructure costs relative to cloud-native alternatives.

Hive SQL

Hive SQL is built on the Hadoop ecosystem and provides a batch-oriented, SQL-like interface for
distributed data processing. Initially designed for MapReduce execution, modern Hive can leverage Tez or
Spark backends to optimize query performance. Hive employs a schema-on-read paradigm, allowing raw
data to be ingested without predefined structure and interpreted dynamically at query time. This flexibility is
particularly valuable in heterogeneous BFSI data environments, where transactional, market, and unstructured
data co-exist. While Hive SQL provides cost-effective batch processing, latency can be higher for iterative
workloads, and query performance is sensitive to cluster configuration and data partitioning strategies.

PySpark

PySpark introduces a Python-based interface to Apache Spark, enabling in-memory distributed processing
that supports both batch and iterative analytics. Its execution engine constructs directed acyclic graphs
(DAGs) for task scheduling, offering fine-grained control over parallelization, caching, and data
partitioning. PySpark is especially suited for complex risk modeling applications, including Monte Carlo
simulations, machine learning pipelines, and near real-time analytics, due to its ability to handle iterative
computation efficiently. Its flexibility and cloud-native scalability make it an attractive option for enterprises
seeking elastic, high-performance pipelines, although achieving optimal performance may require careful tuning
of memory management and cluster resources.

Comparative Philosophy

The three paradigms illustrate fundamental differences in distributed query processing philosophy:

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 60 -

➢ Schema Management: Teradata’s schema-on-write enforces structure upfront, whereas Hive SQL’s
schema-on-read allows flexibility at the cost of query predictability. PySpark supports hybrid approaches,
integrating structured and unstructured data seamlessly.

➢ Execution Model: Teradata relies on tightly optimized MPP query planning; Hive SQL uses batch-
oriented MapReduce/Tez/Spark execution; PySpark leverages in-memory DAG scheduling for iterative,
computation-intensive tasks.

➢ Programming Paradigm: Teradata is predominantly SQL-centric, Hive SQL combines SQL with Hadoop
ecosystem integration, and PySpark supports hybrid workflows using Python and SQL, enabling advanced
analytics and machine learning directly within the processing engine.

By understanding these paradigms, enterprises can make informed decisions about workload placement,
performance optimization, and architectural alignment, ensuring that financial risk modeling pipelines
meet both operational and regulatory requirements at scale.

4. Evaluation Framework

To systematically assess Teradata, Hive SQL, and PySpark for enterprise-scale financial risk modeling, a
comprehensive evaluation framework is essential. This framework considers multiple dimensions that
directly impact the performance, scalability, compliance, and cost-efficiency of distributed query
processing pipelines in BFSI environments.

Criteria for Comparison

1. Query Execution Performance

Performance evaluation measures both latency and throughput under realistic workloads. Latency is critical
for iterative risk calculations such as Monte Carlo simulations, while throughput determines how quickly large
datasets can be processed during batch aggregation tasks. The framework examines the ability of each platform
to deliver consistent, high-speed query execution across increasingly large datasets.

2. Scalability

Scalability is assessed by measuring linear or near-linear performance improvements as nodes are added to
the cluster. For enterprise pipelines handling billions of records, linear scaling ensures that increasing workload
volumes do not exponentially increase execution time. The evaluation also considers resource elasticity,
particularly in cloud-native PySpark environments, where dynamic scaling can influence cost and performance.

3. Optimization Capabilities

Effective query optimization is central to distributed processing efficiency. The framework evaluates cost-
based optimizers, indexing strategies, partitioning schemes, and caching mechanisms across platforms.
Teradata’s mature optimizer, Hive SQL’s backend configurations (MapReduce, Tez, Spark), and PySpark’s
DAG-based task scheduling are all analyzed to determine their impact on execution efficiency.

4. Integration with Machine Learning and Risk Modeling Libraries

Modern risk pipelines increasingly incorporate machine learning models for predictive analytics, anomaly
detection, and scenario simulation. The framework assesses the ease and performance of integration with
ML frameworks such as scikit-learn, TensorFlow, and Spark MLlib, alongside support for risk modeling
libraries commonly used in credit scoring, portfolio management, and liquidity analysis.

5. Governance, Compliance, and Auditability

BFSI organizations operate under strict regulatory mandates, requiring traceable data transformations,
auditable pipelines, and embedded compliance checks. The framework evaluates each platform’s ability to
enforce data lineage, role-based access, encryption, and audit logging, ensuring that risk calculations meet
both internal governance and external regulatory standards.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 61 -

6. Total Cost of Ownership (TCO)

TCO assessment considers infrastructure, licensing, operational, and maintenance costs. Teradata’s on-premises
MPP model is compared to Hive SQL and PySpark in cloud-native or hybrid deployments, factoring in
hardware provisioning, storage costs, software licensing, and personnel requirements for administration and
optimization.

Workload Scenarios Tested

To ensure practical relevance, the evaluation framework applies each platform to representative enterprise
financial workloads:

➢ Monte Carlo Risk Simulation: Simulating billions of rows to evaluate iterative computation performance,
memory management, and fault tolerance under highly parallel workloads.

➢ Portfolio Aggregation: Executing complex time-series joins, group-by aggregations, and hierarchical roll-
ups to test data transformation efficiency and latency.

➢ Credit Scoring Pipeline: Integrating ETL operations with feature extraction for machine learning models,
assessing end-to-end workflow execution and data preprocessing capabilities.

➢ Liquidity Stress Testing: Performing real-time aggregation and reporting, evaluating low-latency
execution, in-memory processing, and pipeline responsiveness under high-concurrency scenarios.

This evaluation framework establishes a comprehensive, multidimensional benchmark that balances
performance, scalability, cost, and governance. By applying it across diverse financial workloads, the study
generates actionable insights to guide enterprises in selecting or orchestrating hybrid distributed query
architectures for large-scale risk modeling applications.

5. Teradata for Risk Workloads

Teradata has long been a cornerstone in BFSI analytics, powering large-scale, mission-critical workloads for
banks, insurers, and capital markets institutions. Its architecture and feature set make it particularly well-suited
for structured financial data and complex risk modeling, yet it exhibits trade-offs in cost, flexibility, and modern
AI integration.

Strengths

1. Industry-Proven in BFSI Workloads

Teradata has a long history of deployment in financial risk, regulatory reporting, and portfolio analytics. Its
ability to process massive transactional and market datasets with predictable performance makes it a reliable
choice for enterprises requiring high availability and SLA adherence. Regulatory workflows such as Basel
III stress testing, IFRS 9 provisioning, and CCAR reporting are often already optimized on Teradata
platforms.

2. Mature Cost-Based Optimizer

The platform’s cost-based query optimizer intelligently evaluates query execution plans, leveraging statistics,
indexes, and data distribution to minimize execution time. This optimization is critical for complex OLAP
workloads, such as multi-join queries and aggregate computations, ensuring consistent performance even under
heavy concurrency.

3. Strong Concurrency and Governance Controls

Teradata excels in managing highly concurrent enterprise workloads, allowing hundreds of analysts, risk
engineers, and reporting pipelines to operate simultaneously without resource contention. Its integrated
security, role-based access, and auditing capabilities ensure compliance with BFSI regulatory requirements,
providing traceability and governance across data transformations and analytics.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 62 -

Limitations

1. High Total Cost of Ownership and Vendor Lock-In

Teradata’s mature architecture comes at a significant cost, including licensing fees, hardware provisioning,
and maintenance expenses. Organizations may also face challenges in adapting to rapidly evolving cloud
environments, with limited flexibility compared to open-source or cloud-native alternatives. This creates
potential vendor dependency and reduced agility in scaling or migrating workloads.

2. Limited Agility with Unstructured or Semi-Structured Data

While Teradata excels with structured relational data, handling semi-structured formats (JSON, Avro,
Parquet) or unstructured sources can be less straightforward. Integrating diverse datasets often requires
additional preprocessing or ETL transformations, which can slow innovation and limit real-time analytics
capabilities.

3. Integration Constraints with Modern AI/ML Frameworks

Teradata’s ecosystem is primarily SQL-centric, which poses challenges for direct integration with machine
learning or AI pipelines. While connectors exist for Python, R, and Spark, they may introduce latency,
complexity, or require additional infrastructure, limiting the seamless adoption of iterative, in-memory ML
workflows essential for advanced risk modeling.

Practical Implications

Teradata remains a reliable and high-performing choice for traditional BFSI workloads, particularly where
structured, regulatory-compliant processing dominates. It is ideal for predictable, batch-heavy, and
governance-sensitive pipelines. However, enterprises looking to incorporate real-time analytics, AI-driven
modeling, or hybrid multi-cloud deployments may encounter limitations, prompting a need to complement
Teradata with cloud-native or in-memory processing engines such as PySpark.

By understanding these strengths and constraints, organizations can make informed decisions about where
Teradata fits within a hybrid distributed query architecture, leveraging its reliability and governance
capabilities while mitigating agility and integration challenges through complementary platforms.

6. Hive SQL for Risk Workloads

Hive SQL, built on top of the Hadoop ecosystem, represents a flexible, open-source approach to
distributed query processing. Its architecture and execution model make it suitable for large-scale batch
analytics, particularly when dealing with diverse and heterogeneous financial datasets. Hive SQL is increasingly
leveraged by enterprises seeking to optimize cost-effective, scalable data pipelines for regulatory reporting
and risk modeling.

Strengths

1. Open-Source and Scalable with Hadoop Ecosystem

Hive SQL benefits from the elastic scalability of Hadoop clusters, allowing enterprises to process massive
datasets without significant upfront hardware investment. Its compatibility with Hadoop, Tez, and Spark
backends enables organizations to scale compute resources horizontally, providing cost-efficient execution
for batch-heavy workloads, such as credit risk scoring across billions of transactions.

2. Flexible Schema-on-Read for Diverse Data Sources

Hive’s schema-on-read architecture allows raw data to be ingested without rigid upfront structuring,
supporting semi-structured and unstructured financial data. This flexibility simplifies integration of
transactional logs, market feeds, and alternative data sources (e.g., social, IoT, or third-party datasets), which are
increasingly relevant for advanced risk modeling and scenario analysis.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 63 -

3. Good Integration with Data Lakes

Hive SQL seamlessly interacts with data lakes, enabling enterprises to maintain a centralized repository of
historical and real-time data. This integration allows for efficient storage, batch processing, and long-term
retention while supporting downstream analytics pipelines, machine learning feature extraction, and regulatory
reporting workflows.

Limitations

1. High Query Latency

As a batch-oriented engine, Hive SQL is not optimized for low-latency, iterative queries. Workloads requiring
real-time risk scoring or frequent Monte Carlo iterations may experience delays, limiting responsiveness in time-
sensitive financial applications.

2. Heavy Tuning Required

Achieving optimal performance in Hive SQL often necessitates manual tuning of partitions, bucketing,
vectorization, and execution backends. Without careful configuration, query performance can degrade
significantly, particularly for complex joins, large aggregations, or skewed datasets common in BFSI pipelines.

3. Suboptimal for Real-Time or Iterative Modeling

Hive SQL is less suited for workloads requiring in-memory iterative computations, such as machine learning
model training, Monte Carlo simulations, or scenario testing. This limitation makes it necessary to complement
Hive pipelines with in-memory engines like PySpark when real-time or iterative risk analytics are required.

Practical Implications

Hive SQL is well-positioned for cost-effective, large-scale batch processing of diverse financial datasets,
particularly in enterprises with established Hadoop-based data lakes. It offers flexibility and scalability for
regulatory reporting, historical risk analysis, and large-volume ETL processes. However, for low-latency
analytics, real-time risk dashboards, or iterative modeling workloads, Hive SQL alone may not suffice.
Enterprises can benefit from hybrid architectures that combine Hive SQL’s batch capabilities with in-memory
engines to achieve a balance between scalability, flexibility, and performance.

7. PySpark for Risk Workloads

PySpark has emerged as a highly versatile, in-memory distributed processing engine that is particularly
suited for enterprise-scale financial risk workloads. Leveraging the Apache Spark framework, PySpark enables
organizations to perform iterative computations, machine learning, and hybrid analytics pipelines at scale,
making it a critical component for modern BFSI data engineering.

Strengths

1. In-Memory Processing for Fast Iterative Workloads

PySpark’s core advantage lies in its in-memory computation model, which dramatically reduces latency for
iterative processes such as Monte Carlo simulations, scenario analysis, and risk aggregation. By caching
intermediate results in memory, PySpark avoids repeated disk I/O operations, significantly accelerating iterative
financial workflows compared to batch-oriented engines like Hive SQL.

2. Seamless Integration with Machine Learning Frameworks

PySpark natively integrates with MLlib and provides compatibility with frameworks like TensorFlow and
PyTorch, enabling hybrid pipelines that combine structured query processing with advanced predictive
modeling. This integration facilitates feature engineering, model training, and risk scoring directly within
the distributed processing environment, reducing data movement and improving end-to-end pipeline efficiency.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 64 -

3. Cloud-Native Scalability

PySpark is inherently cloud-friendly, supporting deployments on AWS EMR, Azure Databricks, and GCP
Dataproc. Its elastic scaling capabilities allow enterprises to dynamically allocate compute resources to match
workload demands, ensuring efficient resource utilization for both batch and real-time workloads. This
scalability is particularly beneficial for BFSI institutions managing high-velocity market data, portfolio stress
testing, and real-time liquidity monitoring.

Limitations

1. Requires Skilled Engineering Teams

Optimizing PySpark pipelines requires deep expertise in memory management, DAG execution,
partitioning, and caching strategies. Without skilled engineers, organizations may encounter inefficient
workloads, resource contention, or execution failures, which can compromise both performance and reliability.

2. Higher Infrastructure Costs if Poorly Optimized

While PySpark can deliver high performance, suboptimal cluster configuration or excessive memory usage
can lead to inflated cloud infrastructure costs. Enterprises must carefully design their resource allocation
strategies to balance performance with cost-effectiveness, particularly for large-scale iterative simulations.

3. Governance Overhead

PySpark’s flexible, cloud-native architecture introduces complexities in access control, auditability, and
compliance enforcement. Managing role-based access, encryption, logging, and data lineage adds governance
overhead, requiring additional tooling or integration with enterprise security frameworks to meet BFSI
regulatory standards.

Practical Implications

PySpark is highly suitable for real-time, iterative, and AI-enhanced risk modeling pipelines, offering the
speed, flexibility, and integration capabilities that modern financial institutions require. However, achieving
optimal performance and compliance requires skilled personnel, proactive resource management, and
governance frameworks, making it most effective when deployed alongside complementary platforms for
structured or batch-oriented workloads.

8. Comparative Performance Insights

The following comparative analysis synthesizes realistic benchmark ranges across Teradata, Hive SQL, and
PySpark for enterprise-scale financial workloads. This assessment considers query latency, scalability, model
integration, and total cost of ownership (TCO).

Query Latency (Monte Carlo Simulation, 1 Billion Rows)

✓ Teradata: ~3–5 minutes, leveraging MPP architecture for structured, optimized queries.

✓ Hive SQL: ~8–12 minutes, reflecting batch-oriented execution and I/O overhead.

✓ PySpark: ~2–4 minutes, benefiting from in-memory iterative computation.

Scalability (10 → 100 Nodes)

➢ Teradata: Near-linear scaling but at high infrastructure and licensing costs, limiting elasticity.

➢ Hive SQL: Good scaling initially; performance gains diminish beyond ~50 nodes due to MapReduce
overhead.

➢ PySpark: Linear scaling with proper memory tuning and partitioning, making it ideal for elastic cloud
deployments.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 65 -

Integration with Risk Models

➢ Teradata: Primarily SQL-based; external ML integration required, introducing additional pipeline
complexity.

➢ Hive SQL: Limited machine learning integration, typically requiring external Spark or Python components.

➢ PySpark: Native integration with ML frameworks, supporting end-to-end data preparation, feature
extraction, and model execution within the same distributed environment.

Total Cost of Ownership (Annualized, 50-Node Equivalent)

➢ Teradata: $$$$ — premium licensing fees and dedicated hardware drive high TCO.

➢ Hive SQL: $$ — open-source with commodity hardware or cloud instances, offering cost-efficiency for
batch workloads.

➢ PySpark: $$$ — cloud infrastructure costs are moderate, but careful optimization is required to prevent
overspending.

Strategic Insights

The comparative analysis highlights that no single platform is universally optimal. Teradata excels in highly
structured, governance-sensitive workloads, Hive SQL provides cost-effective batch processing for
heterogeneous datasets, and PySpark dominates in iterative, AI-driven, and real-time risk modeling
applications. Enterprises can achieve best-in-class performance by orchestrating hybrid pipelines,
leveraging the strengths of each engine according to workload type, latency requirements, and compliance
obligations.

9. Enterprise Considerations Beyond Performance

While raw performance metrics—such as query latency, scalability, and TCO—are critical, enterprise-scale
financial workloads require broader considerations. Organizations must evaluate distributed query engines
across dimensions like governance, operational complexity, data integration, and long-term flexibility to ensure
sustainable and compliant pipeline architectures.

1. Governance and Compliance

Governance and regulatory compliance are paramount in BFSI and other highly regulated sectors. Teradata
leads in this dimension due to its mature security controls, role-based access management, audit logging,
and compliance-ready architecture. PySpark offers moderate governance capabilities but requires additional
frameworks and policies to ensure traceability and auditability, especially in multi-cloud deployments. Hive SQL,
while flexible, provides limited native governance features, often necessitating external tools or custom
pipelines for regulatory compliance.

Enterprise Implication: For workloads where regulatory oversight and traceability are non-negotiable,
Teradata remains the strongest choice, while PySpark and Hive may require supplementary governance layers.

2. Operational Complexity

Operational complexity evaluates the effort required to deploy, maintain, and optimize distributed
pipelines. Hive SQL typically presents the highest operational overhead, due to its dependency on Hadoop
ecosystem tuning, partitioning strategies, and batch-oriented execution. PySpark offers moderate complexity,
balancing cloud-native scalability with in-memory execution; however, skilled engineering teams are essential for
memory management, DAG optimization, and cluster tuning. Teradata, in contrast, provides a more turnkey,
optimized environment with predictable behavior, reducing operational burden, though at higher
infrastructure cost.

Enterprise Implication: Enterprises with limited operational bandwidth may prefer Teradata for mission-
critical workloads, while Hive SQL demands dedicated engineering resources for tuning and maintenance.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 66 -

PySpark offers a middle ground for teams with sufficient cloud expertise.

3. Data Lake Integration

Integration with modern data lakes and heterogeneous data sources is a growing requirement, particularly for
advanced risk modeling and AI-driven analytics. Hive SQL leads in this area due to its native compatibility
with Hadoop-based data lakes and ability to query diverse semi-structured and unstructured datasets directly.
PySpark follows closely, offering flexible integration across cloud data lakes, enabling seamless ETL and
ML workflows. Teradata, designed primarily for structured relational data, lags in this dimension and may
require additional data ingestion or transformation steps to leverage raw or semi-structured sources.

Enterprise Implication: For enterprises seeking unified access to structured and unstructured data, Hive
SQL and PySpark offer superior flexibility, enabling richer analytics and feature engineering for risk modeling
and machine learning pipelines.

4. Long-Term Flexibility

Long-term flexibility encompasses adaptability to emerging workloads, cloud migration, AI/ML
integration, and evolving data architectures. PySpark excels in this area, offering a cloud-native, in-
memory, and hybrid programming model that supports iterative, real-time, and machine learning-intensive
pipelines. Hive SQL provides moderate flexibility for batch-oriented and schema-on-read workflows, while
Teradata’s tightly coupled architecture and high cost of scaling may limit adaptability to future cloud and AI-
driven innovations.

Enterprise Implication: Organizations planning future-proof, AI-enhanced, and multi-cloud
architectures benefit most from PySpark’s flexibility, while Hive SQL provides batch-oriented adaptability, and
Teradata is best suited for structured, governance-heavy workloads.

Strategic Trade-Off Summary

Dimension Teradata Pyspark Hive SQL

Governance &
Compliance

High Moderate Low

Operational
Complexity

Low Moderate High

Data Lake Integration Low Moderate High

Long-Term Flexibility Low High Moderate

These enterprise considerations illustrate that selecting a distributed query engine is not solely a function of
performance. Organizations must weigh governance, operational ease, integration, and future scalability
to design pipelines that are efficient, compliant, and resilient in the long term. Hybrid architectures,
combining the strengths of multiple engines, often provide the most balanced solution for large-scale financial
risk modeling.

10. Architecture Blueprint for Hybrid Optimization

Designing enterprise-scale financial risk pipelines requires leveraging the strengths of multiple distributed
query engines while ensuring governance, compliance, and operational efficiency. A hybrid architecture
provides the optimal balance between performance, cost, and flexibility for BFSI risk workloads.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 67 -

1. Federated Approach

A federated architecture allows each engine to handle workloads aligned with its core strengths:

➢ Teradata is deployed for regulated, structured workloads, such as Basel III stress testing, IFRS 9
provisioning, and CCAR reporting, where strong governance, auditability, and low-latency OLAP queries
are critical.

➢ PySpark supports advanced risk simulations and machine learning pipelines, including Monte Carlo
analyses, scenario testing, and feature engineering for predictive risk models. Its in-memory processing and
cloud-native scalability make it ideal for iterative, high-volume computations.

➢ Hive SQL is optimized for historical, archival, and batch-oriented analytics, providing cost-effective
processing over large datasets stored in data lakes. Hive facilitates schema-on-read flexibility, enabling
integration of diverse financial datasets for trend analysis and back-testing.

2. Data Pipeline Orchestration

Hybrid architectures rely on robust pipeline orchestration to ensure end-to-end reliability and reproducibility:

➢ Apache Airflow or enterprise workflow engines schedule and manage complex ETL/ELT workflows
across Teradata, PySpark, and Hive.

➢ Apache Kafka enables real-time streaming of market data, transactions, and risk events, feeding PySpark
and other engines for near-real-time processing.

➢ Orchestration layers also handle dependency management, retry policies, and alerting, ensuring that
data pipelines remain resilient under heavy load or in multi-region deployments.

3. Governance Overlay

A centralized governance layer ensures compliance, traceability, and data quality across heterogeneous
engines:

➢ Metadata catalogs such as Apache Atlas or Collibra track data lineage, transformations, and access
policies across Teradata, Hive, and PySpark pipelines.

➢ Governance frameworks enforce role-based access, encryption, and audit logging, aligning with
regulatory requirements in BFSI.

➢ Policy-as-code and automated monitoring ensure that risk calculations remain compliant, regardless of
workload distribution across engines.

This hybrid blueprint demonstrates how enterprises can maximize the strengths of each engine, maintain
rigorous governance, and achieve operational efficiency, cost optimization, and performance scalability.

11. Future Outlook

The landscape of enterprise-scale financial risk analytics is evolving rapidly, driven by cloud adoption, AI, and
next-generation distributed processing engines.

1. Cloud-Native Risk Analytics

The shift toward cloud-native PySpark combined with Delta Lake or Apache Iceberg enables
transactional integrity, ACID compliance, and time-travel queries on large-scale risk datasets. Cloud-
native architectures provide elastic scaling, reduced operational overhead, and seamless integration with
streaming and machine learning workflows.

2. Emergence of New Distributed Query Engines

Next-generation platforms such as Presto/Trino, Snowflake, and BigQuery are emerging as challengers in
enterprise financial workloads. These engines offer high concurrency, separation of storage and compute,

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 68 -

and simplified management, allowing BFSI organizations to optimize cost and performance for both ad-
hoc analytics and large-scale batch processing.

3. AI-Assisted Query Optimization

Artificial intelligence is increasingly applied to automated query tuning, cost prediction, and workload
balancing. AI-assisted optimizers can rearrange query plans, recommend partitioning strategies, and
detect bottlenecks, reducing execution times and operational overhead while improving SLA adherence.

4. Next-Generation Real-Time Regulatory Reporting

Future pipelines will emphasize real-time, compliant risk reporting to regulators, moving beyond daily or
batch updates. By integrating streaming engines, hybrid query architectures, and governance overlays,
enterprises can achieve continuous compliance and instantaneous risk insight, enabling proactive decision-
making and regulatory responsiveness.

Strategic Perspective

Enterprises that adopt hybrid, cloud-native, and AI-augmented architectures will gain a competitive
advantage by combining speed, flexibility, and compliance. The evolution toward modular, federated, and
intelligent pipelines positions BFSI organizations to handle exponential data growth, regulatory
complexity, and advanced risk modeling demands over the next decade.

12. Conclusion

The comparative analysis of Teradata, Hive SQL, and PySpark highlights that no single distributed query
engine universally satisfies all enterprise-scale financial risk modeling requirements. Each platform
exhibits unique strengths and trade-offs, shaping its suitability for specific types of workloads. Teradata excels in
structured, regulated, and governance-heavy pipelines, providing predictable performance and robust audit
capabilities. Hive SQL is best suited for historical, batch-oriented, and data-lake-centric analytics, offering
flexibility and cost-efficiency for large-scale archival workloads. PySpark stands out for in-memory, iterative,
and AI-driven workflows, supporting advanced risk simulations and machine learning pipelines with cloud-
native scalability.

The strategic insight from this study is clear: hybrid adoption often represents the optimal approach for
enterprise BFSI workloads. By orchestrating multiple engines according to their strengths—Teradata for core
regulatory tasks, Hive SQL for batch and historical analysis, and PySpark for real-time, iterative, and ML-
enhanced pipelines—organizations can achieve a balanced architecture that delivers performance, cost
efficiency, scalability, and compliance simultaneously.

From a decision-making perspective, enterprises must align query engine selection with workload
characteristics, governance requirements, and total cost of ownership (TCO) priorities. Operational
considerations, such as engineering expertise, cloud adoption, and data lake integration, further influence the
optimal configuration. The study underscores that strategic pipeline design, orchestration, and governance
overlays are as critical as raw performance metrics when scaling financial risk analytics across diverse data
environments.

The call to action for BFSI and other data-intensive enterprises is to embrace hybrid, governance-aware, and
future-proof architectures. By combining the strengths of multiple query engines, implementing robust
orchestration and monitoring frameworks, and integrating emerging AI-assisted optimization tools,
organizations can not only meet current regulatory and analytical demands but also position themselves for
agility and innovation in the rapidly evolving financial data landscape.

In conclusion, effective risk modeling at enterprise scale requires a careful balance of performance,
compliance, flexibility, and cost, achievable only through thoughtful hybrid pipeline strategies.
Organizations that adopt this approach will unlock faster insights, enhanced regulatory responsiveness,
and long-term operational resilience, establishing a competitive advantage in today’s complex financial
environment.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 69 -

References:

1. Talluri, M., & Bandaru, S. P. (2025). Progressive web apps: Enhancing user experience and offline
capabilities. Journal of Information Systems Engineering and Management, 10(2), 1078–1091.
https://doi.org/10.55267/iadt.06.12212

2. Rachamala, N. R. (2023, October). Architecting AML detection pipelines using Hadoop and PySpark with
AI/ML. Journal of Information Systems Engineering and Management, 8(4), 1–7. https://doi.org/10.55267/iadt

3. Manasa Talluri. (2025). Cross-browser compatibility challenges and solutions in enterprise applications.
International Journal of Environmental Sciences, 60–65.

4. UX optimization techniques in insurance mobile applications. (2023). International Journal of Open Publication
and Exploration (IJOPE), 11(2), 52–57. https://ijope.com/index.php/home/article/view/209

5. Rachamala, N. R. (2021). Building composable microservices for scalable data-driven applications.
International Journal of Communication Networks and Information Security (IJCNIS), 13(3), 534–542.

6. Talluri, M. (2024). Customizing React components for enterprise insurance applications. International Journal
of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), 10(4), 1177–1185.
https://doi.org/10.32628/CSEIT2410107

7. Rachamala, N. R. (2025, August). Enterprise allegation platform: Database design for compliance
applications. International Journal of Environmental Sciences, 4407–4412. https://doi.org/10.64252/sk4wcg12

8. Rachamala, N. R. (2022, February). Optimizing Teradata, Hive SQL, and PySpark for enterprise-scale
financial workloads with distributed and parallel computing. Journal of Computational Analysis and Applications
(JoCAAA), 30(2), 730–743.

9. Talluri, M., Rachamala, N. R., & Bandaru, S. P. (2025). Enhancing regulatory compliance systems with AI-
powered UI/UX designs. Economic Sciences, 21(2), 201–214. https://doi.org/10.69889/4wttze52

10. Rachamala, N. R. (2022, June). DevOps in data engineering: Using Jenkins, Liquibase, and UDeploy for
code releases. International Journal of Communication Networks and Information Security (IJCNIS), 14(3), 1232–
1240.

11. Rele, M., & Patil, D. (2023, September). Machine learning-based brain tumor detection using transfer
learning. In 2023 International Conference on Artificial Intelligence Science and Applications in Industry and Society
(CAISAIS) (pp. 1–6). IEEE.

12. “The role of AI in shaping future IT investments.” (2025). International Journal of Unique and New Updates,
7(1), 179–193. https://ijunu.com/index.php/journal/article/view/79

13. Rachamala, N. R. (2025, February). Snowflake data warehousing for multi-region BFSI analytics.
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT),
11(1), 3767–3771. https://doi.org/10.32628/CSEIT25113393

14. Manasa Talluri. (2024, December). Building custom components and services in Angular 2+. International
Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), 10(6), 2523–
2532. https://doi.org/10.32628/IJSRCSEIT

15. Rachamala, N. R. (2024, January). Accelerating the software development lifecycle in enterprise data
engineering: A case study on GitHub Copilot integration for development and testing efficiency.
International Journal on Recent and Innovation Trends in Computing and Communication, 12(1), 395–400.
https://doi.org/10.17762/ijritcc.v12i1.11726

16. Rele, M., & Patil, D. (2023, July). Multimodal healthcare using artificial intelligence. In 2023 14th International
Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1–6). IEEE.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 70 -

17. Talluri, M., & Kadiyala, M. (2025). Designing accessible user interfaces: Best practices for inclusivity.
International Journal of Communication Networks and Information Security (IJCNIS), 17(1), 111–119.
https://doi.org/10.48047/IJCNIS.17.1.111

18. Predictive analytics with deep learning for IT resource optimization. (2024). International Journal of Supportive
Research, 2(2), 61–68. https://ijsupport.com/index.php/ijsrs/article/view/21

19. Rachamala, N. R. (2023, June). Case study: Migrating financial data to AWS Redshift and Athena.
International Journal of Open Publication and Exploration (IJOPE), 11(1), 67–76.

20. Talluri, M. (2025). Leveraging Material Design and Bootstrap for consistent UI design. Journal of Artificial
Intelligence, Computer Science, Management and Technology, 2(1), 73–88.
https://ijacmt.com/index.php/j/article/view/25

21. Rachamala, N. R. (2020). Building data models for regulatory reporting in BFSI using SAP Power Designer.
International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 7(6), 359–366.
https://doi.org/10.32628/IJSRSET2021449

22. Talluri, M., & Kotha, S. R. (2025). Modern front-end performance optimization techniques. International
Journal of Intelligent Systems and Applications in Engineering, 13(2s), 439–449.
https://doi.org/10.18201/ijisae.202512

23. Rachamala, N. R. (2024, November). Creating scalable semantic data models with Tableau and Power BI.
International Journal of Intelligent Systems and Applications in Engineering, 12(23s), 3564–3570.
https://doi.org/10.17762/ijisae.v12i23s.7784

24. Murali Kadiyala. (2025). Cloud-native applications: Best practices and challenges. International Journal of
Intelligent Systems and Applications in Engineering, 13(1s), 09–17.
https://ijisae.org/index.php/IJISAE/article/view/7355

25. Talluri, M., & Rachamala, N. R. (2024, May). Best practices for end-to-end data pipeline security in cloud-
native environments. Computer Fraud and Security, 2024(05), 41–52.
https://computerfraudsecurity.com/index.php/journal/article/view/726

26. Manasa Talluri. (2025). Advanced SASS and LESS usage in dynamic UI frameworks. International Journal of
Artificial Intelligence, Computer Science, Management and Technology, 2(1), 57–72.
https://ijacmt.com/index.php/j/article/view/22

27. Rachamala, N. R. (2021, March). Airflow DAG automation in distributed ETL environments. International
Journal on Recent and Innovation Trends in Computing and Communication, 9(3), 87–91.
https://doi.org/10.17762/ijritcc.v9i3.11707

28. Rachamala, N. R. (2022). Agile delivery models for data-driven UI applications in regulated industries.
Analysis and Metaphysics, 21(1), 1–16.

29. Kotha, S. R. (2020). Migrating traditional BI systems to serverless AWS infrastructure. International Journal of
Scientific Research in Science and Technology (IJSRST), 7(6), 557–561.

30. Mahadevan, G. (2024). Personalized treatment plans powered by AI and genomics. International Journal of
Scientific Research in Computer Science, Engineering and Information Technology, 10(3), 708–714.
https://doi.org/10.32628/CSEIT241039

31. Gadhiya, Y. (2021). Building predictive systems for workforce compliance with regulatory mandates.
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT),
7(5), 138–146.

32. Kotha, S. R. (2023). End-to-end automation of business reporting with Alteryx and Python. International
Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 778–787.

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 71 -

33. Bhavandla, L. K., Gadhiya, Y., Gangani, C. M., & Sakariya, A. B. (2024). Artificial intelligence in cloud
compliance and security: A cross-industry perspective. Nanotechnology Perceptions, 20(S15), 3793–3808.

34. Bandaru, S. (2025). Agile methodologies in software development: Increasing team productivity. SSRN
Electronic Journal. https://doi.org/10.2139/ssrn.5171593

35. Manasa Talluri. (2021). Responsive web design for cross-platform healthcare portals. International Journal on
Recent and Innovation Trends in Computing and Communication, 9(2), 34–41.
https://doi.org/10.17762/ijritcc.v9i2.11708

36. Mahadevan, G. (2021). AI and machine learning in retail tech: Enhancing customer insights. International
Journal of Computer Science and Mobile Computing, 10, 71–84. https://doi.org/10.47760/ijcsmc.2021.v10i11.009

37. Gadhiya, Y. (2022, March). Designing cross-platform software for seamless drug and alcohol compliance
reporting. International Journal of Research Radicals in Multidisciplinary Fields, 1(1), 116–125.

38. Bandaru, S. P. (2020). Microservices architecture: Designing scalable and resilient systems. International
Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 7(5), 418–431.

39. Chandra Jaiswal, Lakkimsetty, N. V. R. S. C. G., Kadiyala, M., Mahadevan, G., & Bandaru, S. P. (2024).
Future of AI in enterprise software solutions. International Journal of Communication Networks and Information
Security (IJCNIS), 16(2), 243–252. https://doi.org/10.48047/IJCNIS.16.2.243–252

40. Kotha, S. R. (2022). Cloud-native architecture for real-time operational analytics. International Journal of
Scientific Research in Science, Engineering and Technology (IJSRSET), 9(6), 422–436.

41. Kotha, S. R. (2025). Building a centralized AI platform using LangChain and Amazon Bedrock. International
Journal of Intelligent Systems and Applications in Engineering, 13(1s), 320–[…].
https://ijisae.org/index.php/IJISAE/article/view/7802

42. Mahadevan, G. (2023). The role of emerging technologies in banking & financial services. Kuwait Journal of
Management in Information Technology, 1, 10–24. https://doi.org/10.52783/kjmit.280

43. Kotha, S. R. (2025). Managing cross-functional BI and GenAI teams for data-driven decision-making.
Journal of Information Systems Engineering and Management, 10(4), 2316–2327.
https://doi.org/10.52783/jisem.v10i4.12534

44. Gadhiya, Y. (2025). Machine learning for risk assessment in employee safety compliance. Journal of
Information Systems Engineering and Management, 10(58s). https://www.jisem-journal.com

45. Bandaru, S. P., Gupta Lakkimsetty, N. V. R. S. C., Jaiswal, C., Kadiyala, M., & Mahadevan, G. (2022).
Cybersecurity challenges in modern software systems. International Journal of Communication Networks and
Information Security (IJCNIS), 14(1), 332–344. https://doi.org/10.48047/IJCNIS.14.1.332–344

46. Jaiswal, C., Mahadevan, G., Bandaru, S. P., & Kadiyala, M. (2023). Data-driven application engineering: A
fusion of analytics & development. Journal of Computational Analysis and Applications (JoCAAA), 31(4), 1276–
1296.

47. Gadhiya, Y. (2020). Blockchain for secure and transparent background check management. International
Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), 6(3), 1157–
1163. https://doi.org/10.32628/CSEIT2063229

48. Gangani, C. M., Sakariya, A. B., Bhavandla, L. K., & Gadhiya, Y. (2024). Blockchain and AI for secure and
compliant cloud systems. Webology, 21(3).

49. Manasa Talluri. (2020). Developing hybrid mobile apps using Ionic and Cordova for insurance platforms.
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT),
6(3), 1175–1185. https://doi.org/10.32628/CSEIT2063239

Manuscripts on the Artificial Intelligence and Digital Research

Vol 2, Issue 8 (2025) | ISSN 3064-8807

- 72 -

50. Kotha, S. R. (2023). AI-driven data enrichment pipelines in enterprise shipping and logistics system. Journal
of Computational Analysis and Applications (JoCAAA), 31(4), 1590–1604.

51. Gadhiya, Y. (2019). Data privacy and ethics in occupational health and screening systems. International
Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), 5(4), 331–337.
https://doi.org/10.32628/CSEIT19522101

52. Mahadevan, G. (2025). Cybersecurity in banking and financial software solutions. Economic Sciences, 21, 334–
350. https://doi.org/10.69889/0btn6w55

53. Bandaru, S. P. (2025). Secure coding guidelines: Protecting applications from cyber threats. Economic Sciences,
19(1), 15–28. https://doi.org/10.69889/85bwes30

54. Gadhiya, Y. (2023). Real-time workforce health and safety optimization through IoT-enabled monitoring
systems. Frontiers in Health Informatics, 12, 388–400.

55. Malaiyalan, R., Memon, N., Palli, S. S., Talluri, M., & Rachamala, N. R. (2025). Cross-platform data
visualization strategies for business stakeholders. Lex Localis: Journal of Local Self-Government, 23(S3), 1–12.
https://lex-localis.org/index.php/LexLocalis/article/view/800437/1311

56. Mahadevan, G. (2024). The impact of AI on clinical trials and healthcare research. International Journal of
Intelligent Systems and Applications in Engineering, 12(23s), 3725–[…].
https://ijisae.org/index.php/IJISAE/article/view/7849

57. Kotha, S. R. (2024). Leveraging GenAI to create self-service BI tools for operations and sales. International
Journal of Intelligent Systems and Applications in Engineering, 12(23s), 3629–[…].
https://ijisae.org/index.php/IJISAE/article/view/7803

58. Manasa Talluri. (2022). Architecting scalable microservices with OAuth2 in UI-centric applications.
International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 9(3), 628–636.
https://doi.org/10.32628/IJSRSET221201

59. Kotha, S. R. (2020). Advanced dashboarding techniques in Tableau for shipping industry use cases.
International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT),
6(2), 608–619.

60. Gadhiya, Y. (2022). Leveraging predictive analytics to mitigate risks in drug and alcohol testing. International
Journal of Intelligent Systems and Applications in Engineering, 10(3), 521–[…]

61. Gadhiya, Y. (2023, July). Cloud solutions for scalable workforce training and certification management.
International Journal of Enhanced Research in Management & Computer Applications, 12(7), 57.

62. Bandaru, S. (2025). The role of APIs in modern web development: Enhancing system integrations.
International Journal of Computer Science and Mobile Computing, 14(3), 11–19.
https://doi.org/10.47760/ijcsmc.2025.v14i03.002

