

21 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

AMERICAN Journal of Engineering,
Mechanics and Architecture

Volume 1, Issue 1, 2023 ISSN (E): 2993-2637

Test-Driven Enterprise Data Engineering with PySpark and DBT

Arvind Kumar Sharma

Department of Data Science and Engineering, Indian Institute of Technology (IIT) Madras,

 Chennai, India

Kavya Nair

Department of Computer Applications, National Institute of Technology (NIT) Trichy,

 Tiruchirappalli, India

Abstract: Enterprises increasingly rely on large-scale data pipelines to deliver analytics and

insights, but traditional development practices often leave data engineering projects vulnerable to

errors, inefficiencies, and costly rework. Test-driven development (TDD), long established in

software engineering, is now emerging as a critical discipline in modern data engineering. This

article explores how PySpark and dbt (data build tool) can be combined to bring test-driven

methodologies into enterprise-scale data ecosystems. By applying unit tests to PySpark

transformations, and leveraging dbt’s native testing and documentation framework, organizations

can enforce data quality, detect schema drift, and validate business logic before deployment. The

discussion highlights architectural patterns, integration workflows, and best practices for

embedding testing across the data lifecycle—from ingestion to transformation and consumption.

Future directions such as AI-assisted test generation and continuous testing in real-time pipelines

are also considered. Ultimately, the article positions TDD not merely as a technical safeguard,

but as a strategic enabler of trustworthy, maintainable, and scalable enterprise data engineering.

Keywords: IoT Security, Cyberattack Detection, Real-Time Monitoring, RT-IoT2022, Machine

Learning, Network Intrusion (NIDS).

Introduction: Why Test-Driven Data Engineering Matters

In today’s digital economy, data has evolved into a mission-critical enterprise asset, powering

everything from operational dashboards and compliance reporting to machine learning models

and real-time customer experiences. As organizations collect and process increasingly complex

and diverse datasets, the reliability of data pipelines directly determines the trustworthiness of

insights and the success of data-driven strategies.

Yet, many enterprises still rely on ad-hoc pipelines that are hastily assembled to meet immediate

reporting needs. These pipelines often suffer from silent failures, undetected schema changes,

inconsistent transformations, and data quality issues that surface only when decision-makers

notice discrepancies. Over time, these fragile systems accumulate technical debt, making them

harder to scale, maintain, and govern. The result is a cycle of firefighting, where engineering

teams spend more time troubleshooting than delivering value.

To break this cycle, organizations are turning to test-driven principles as the foundation of

modern data engineering. Just as test-driven development (TDD) revolutionized software

engineering by embedding validation into every stage of coding, test-driven data engineering

applies the same discipline to data pipelines. By writing tests before implementing

22 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

transformations, engineers can validate assumptions about data, catch errors early, and enforce

data quality at scale. This approach not only strengthens trust in analytics but also enhances

maintainability, reduces risk, and ensures that pipelines evolve without compromising reliability.

Test-driven data engineering, particularly when implemented with tools like PySpark and dbt,

provides enterprises with a blueprint for building robust, auditable, and future-ready data

systems—a critical step in treating data as the enterprise-grade product it has become.

Challenges in Enterprise Data Engineering

As data becomes the lifeblood of enterprise operations, engineering teams face mounting

challenges in building and maintaining pipelines that are both reliable and scalable. Unlike

small-scale projects, enterprise data engineering must contend with the realities of massive

volumes, shifting data landscapes, and strict accountability requirements. Three core challenges

stand out as defining the complexity of this domain.

1. Scale: Handling billions of rows across distributed systems

Enterprises generate and process data at staggering volumes, often spanning billions of rows

ingested daily from diverse systems such as IoT devices, financial transactions, customer

interactions, and digital platforms. Managing this scale requires distributed processing

frameworks like PySpark, but even with such tools, bottlenecks in storage, computation, and

network transfer can quickly emerge. Without careful optimization, queries can become

prohibitively expensive, refresh times unmanageable, and system reliability compromised.

2. Complexity: Evolving schemas, upstream dependencies, and transformation logic

Enterprise data ecosystems are rarely static. Source systems change field names, add new

attributes, or deprecate tables with little notice. Each change cascades downstream, breaking

transformations, dashboards, and even machine learning models. Moreover, the

interdependencies between ingestion pipelines, business logic transformations, and reporting

layers create a fragile web where one adjustment can have unintended consequences. This

complexity often results in brittle pipelines that demand constant maintenance and firefighting.

3. Accountability: Ensuring data accuracy, reproducibility, and compliance

Beyond scale and complexity, enterprises face the critical challenge of accountability.

Executives, regulators, and customers expect data-driven decisions to be accurate, reproducible,

and compliant with legal frameworks such as GDPR, HIPAA, or SOX. However, without proper

validation and testing, errors can go unnoticed until they lead to flawed insights or compliance

breaches. In industries like finance or healthcare, such failures can carry severe financial,

reputational, and legal consequences. Achieving accountability requires not only technical

controls but also transparent auditability and robust testing practices embedded throughout the

data lifecycle.

In short, enterprise data engineering is defined by the trifecta of scale, complexity, and

accountability. Overcoming these challenges demands structured approaches like test-driven

development, which can transform pipelines from fragile workflows into resilient, trustworthy

data products.

Principles of Test-Driven Development in Data Engineering

Test-Driven Development (TDD), a proven practice in software engineering, emphasizes writing

tests before writing the actual code. This approach ensures that functionality is validated from

the outset, reduces defects, and builds confidence in the system’s behavior. When translated into

the world of data engineering, TDD adapts these same principles to address the unique

challenges of data pipelines—ensuring that transformations, quality, and governance are

enforced as part of the development lifecycle rather than as afterthoughts.

23 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

1. Translating software TDD into the data domain

In traditional software, TDD starts with writing a failing test that defines the expected behavior,

followed by implementing code to pass the test, and then refactoring while keeping the test suite

green. In data engineering, the principle is similar:

➢ Define assumptions about the data (e.g., schema, constraints, or expected values).

➢ Write tests to validate those assumptions.

➢ Build transformations or ingestion logic to satisfy the tests.

➢ Continuously run tests to ensure ongoing compliance as pipelines evolve.

This mindset shifts pipelines from fragile, reactive workflows into predictable, testable

systems.

2. Types of data tests

To operationalize TDD in data engineering, a variety of tests can be applied across the pipeline:

➢ Schema validation tests: Ensure that input data adheres to expected formats, column types,

and constraints, preventing upstream changes from silently breaking pipelines.

➢ Transformation correctness tests: Validate that business logic—such as revenue

calculations, joins, or aggregations—produces the expected outcomes against defined test

cases.

➢ Data quality checks: Enforce rules around null values, duplicates, ranges, or referential

integrity to guarantee that the data is both accurate and trustworthy.

 Together, these tests create a safety net that catches errors before they cascade downstream.

3. Benefits of test-driven data engineering

Adopting TDD principles in data engineering yields several enterprise-level benefits:

➢ Catching issues early: Problems such as schema drift or faulty transformations are detected

at the development stage, reducing costly production failures.

➢ Confidence in continuous delivery: Automated tests allow pipelines to be deployed

iteratively with reduced risk, enabling faster innovation and shorter release cycles.

➢ Improved trust and accountability: Stakeholders can rely on the accuracy and consistency

of data, while engineers gain transparency into pipeline behavior.

By embedding TDD into data engineering workflows—particularly with tools like PySpark for

large-scale processing and dbt for transformation validation—enterprises can build pipelines that

are not only performant but also reliable, auditable, and future-ready.

Role of PySpark in Test-Driven Workflows

PySpark has become the backbone of large-scale data engineering, enabling distributed

processing of massive datasets across clusters. Within a test-driven paradigm, PySpark plays a

critical role by providing the execution engine for transformations while also offering

flexibility for testing at scale.

One of the key practices is writing unit tests for Spark transformations using lightweight, in-

memory datasets. By simulating input and output scenarios, engineers can validate the

correctness of joins, aggregations, and business rules without running full-scale jobs. This

approach ensures that logic is sound before it touches production-scale data. Furthermore,

PySpark allows engineers to mock external data sources and edge cases—such as missing

fields, malformed records, or skewed distributions—ensuring pipelines remain resilient under

real-world conditions. By combining distributed scalability with localized testing, PySpark

enables enterprises to embed reliability directly into their data transformation layer.

24 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

Role of dbt in Test-Driven Data Modeling

While PySpark addresses large-scale computation, dbt (data build tool) acts as the semantic

and transformation layer that enforces structure, consistency, and governance in enterprise

data pipelines. dbt enables engineers to define transformations in SQL while managing

dependencies, documentation, and testing in a transparent and reproducible way.

Its built-in testing framework provides out-of-the-box capabilities for schema validation (e.g.,

column types, primary keys) and data quality checks (e.g., uniqueness, non-null constraints). For

enterprises with specialized needs, dbt also supports custom test development, allowing teams

to encode business-specific rules such as “revenue must always reconcile with general ledger

totals” or “inactive customers cannot generate new orders.”

Beyond testing, dbt integrates seamlessly with version control systems and CI/CD pipelines,

enabling continuous validation of transformations before deployment. Each change to a model

can trigger automated test runs, ensuring that regressions are caught early and that data products

remain trustworthy as they evolve.

Together, PySpark and dbt form a powerful ecosystem for test-driven data engineering.

PySpark ensures scalability and transformation correctness at the processing layer, while dbt

enforces semantic consistency, governance, and quality at the modeling layer. By combining

these tools, enterprises can build pipelines that are not only performant but also auditable,

maintainable, and ready for continuous delivery in complex data environments.

Integrating PySpark and dbt in Enterprise Architectures

Bringing test-driven principles into enterprise-scale data pipelines requires the right blend of

technologies. PySpark and dbt (data build tool) complement each other by addressing different

layers of the data lifecycle—PySpark excels at distributed computation and heavy lifting of raw

data, while dbt specializes in semantic transformations, governance, and testing. Together, they

provide a robust foundation for test-driven data engineering.

1. Orchestrating PySpark jobs for raw-to-curated transformations

PySpark is often the first layer in enterprise data pipelines, responsible for ingesting raw data

from distributed sources and applying large-scale transformations such as joins, enrichments, or

data standardization. These curated datasets serve as the foundation for higher-level business

modeling. Embedding unit tests into PySpark workflows ensures that assumptions about schema

integrity, null handling, and data consistency are validated before data moves downstream.

2. Layering dbt models for business logic and governance

Once raw data is curated, dbt provides a structured framework for applying business logic,

defining KPIs, and managing dependencies between models. dbt’s declarative approach enforces

consistency while its built-in testing features validate referential integrity, uniqueness, and

accepted values. By layering dbt models on top of PySpark outputs, enterprises achieve a clear

separation between heavy data processing and business-facing logic, enabling better governance

and maintainability.

3. End-to-end testing: from raw ingestion to analytics-ready datasets

Test-driven data engineering comes to life when tests span the entire pipeline, from ingestion to

consumption. PySpark unit tests validate raw-to-curated data transformations, while dbt’s tests

confirm that curated data meets business requirements. End-to-end integration tests further

ensure that pipelines produce accurate, analytics-ready datasets. This multi-level testing strategy

reduces the risk of silent failures and builds trust in downstream reports and machine learning

models.

4. Example workflow

A typical enterprise workflow might look like this:

25 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

➢ Step 1: PySpark ingests raw data from multiple sources and applies distributed

transformations.

➢ Step 2: Automated PySpark unit tests validate schema integrity and transformation logic.

➢ Step 3: dbt builds semantic models on top of curated data, embedding reusable business

definitions.

➢ Step 4: dbt’s test suite validates relationships, accepted values, and data consistency.

➢ Step 5: CI/CD pipelines orchestrate the automated execution of tests before deployment,

ensuring production datasets are both correct and reliable.

This integration provides a powerful pattern for scaling test-driven pipelines in complex

enterprise environments.

Best Practices for Test-Driven Data Engineering

Adopting TDD in data engineering requires not only tools but also disciplined practices that

ensure tests are consistent, efficient, and scalable. The following best practices guide successful

implementation:

1. Shift-left testing: embedding tests early in pipeline design

Testing should not be an afterthought. By adopting a “shift-left” approach, engineers write tests

alongside pipeline logic, validating assumptions at the earliest stages of design. This prevents

errors from propagating downstream and reduces costly rework later in the lifecycle.

2. Building reusable test libraries and frameworks

Enterprises benefit from standardized test libraries that encapsulate common validation logic,

such as null checks, schema enforcement, or business rule validation. Reusable libraries

accelerate development, improve consistency, and reduce duplication across teams.

3. Automating test execution with CI/CD

Automation is critical at scale. By embedding test execution into CI/CD pipelines, organizations

ensure that every code change, schema update, or transformation runs through automated

validation before deployment. This reduces manual overhead and enforces a culture of

continuous quality.

4. Balancing test coverage with performance and scalability

While comprehensive testing is important, excessive test execution can introduce unnecessary

overhead. Enterprises must strike a balance, prioritizing critical data quality tests while

leveraging sampling strategies or incremental checks for performance-heavy workloads. Scalable

testing strategies ensure pipelines remain efficient without compromising trust in the data.

In essence, the combination of PySpark for distributed transformations, dbt for semantic

governance, and disciplined test-driven practices creates a blueprint for building enterprise

data pipelines that are scalable, resilient, and trustworthy.

Future Outlook

The future of test-driven data engineering is being shaped by advances in automation, AI, and

real-time processing. As enterprises demand greater agility and reliability, the scope of TDD will

expand well beyond today’s batch-oriented pipelines.

1. AI-assisted test generation for data engineering

Artificial intelligence is poised to revolutionize how data tests are created and maintained. By

analyzing metadata, lineage, and historical query patterns, AI copilots can automatically suggest

validation rules, generate unit tests, and even predict areas of potential failure. This shift will

26 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

reduce manual effort, accelerate development, and ensure that testing scales alongside growing

data complexity.

2. Expanding TDD principles into real-time and streaming architectures

With the rise of event-driven systems, IoT, and real-time analytics, pipelines are no longer static

batch jobs. Applying TDD principles to streaming frameworks will be critical to ensuring

continuous validation of high-velocity data. Lightweight, incremental testing approaches will

help organizations safeguard both latency-sensitive applications and mission-critical decision-

making.

3. Toward self-healing, self-validating data pipelines

The ultimate vision for test-driven data engineering is the creation of self-healing pipelines. By

combining TDD with monitoring, anomaly detection, and automated remediation, pipelines will

not only detect issues but also fix them in real time. This evolution will reduce downtime,

enhance trust, and transform pipelines from fragile workflows into resilient, autonomous

systems.

Conclusion

Test-driven data engineering represents both a cultural and technical shift in how enterprises

design, validate, and maintain pipelines. Moving away from reactive firefighting, it establishes

testing as a first-class citizen in the data lifecycle—ensuring that quality and reliability are built

into systems from the start.

Tools like PySpark and dbt serve as complementary pillars in this journey. PySpark provides

the distributed power to transform raw data at enterprise scale, while dbt brings semantic

structure, governance, and built-in testing frameworks. Together, they enable organizations to

embed TDD into every stage of data engineering.

The path forward is clear: enterprises that embrace TDD will not only improve the resilience

and trustworthiness of their data platforms but also unlock confidence in data-driven decisions.

In an era where data is both an asset and a liability, test-driven engineering stands as a

cornerstone of enterprise-grade reliability and sustainable innovation.

References:

1. Rachamala, N. R. (2023, October). Architecting AML detection pipelines using Hadoop and

PySpark with AI/ML. Journal of Information Systems Engineering and Management, 8(4),

1–7. https://doi.org/10.55267/iadt.Retrieved from

https://www.jisemjournal.com/download/22_ARCHITECTING_AML_DETECTION_PIPE

LINES.pdf

2. Aluoch, R. A., & Masitenyane, L. A. FACTORS AFFECTING

MILLENNIALS’ATTITUDES AND PURCHASE INTENTIONS TOWARDS ORGANIC

PERSONAL HEALTHCARE PRODUCTS.

3. Masitenyane, L. A., Muposhi, A., & Mokoena, B. A. (2023). Outcomes of relationship

quality in business-to-business contexts: A South African concrete product market

perspective. Cogent Business & Management, 10(3), 2266613.

4. Masitenyane, L. A., Muposhi, A., & Mokoena, B. A. (2023). Outcomes of relationship

quality in business-to-business contexts: A South African concrete product market

perspective. Cogent Business & Management, 10(3), 2266613.

5. Masitenyane, L. A., & Mokoena, B. A. (2023). An Examination of the Vaal River Carnival

Attendees’ Perceptions of Service Quality Towards Satisfaction and Future Behavioural

Intentions. African Journal of Hospitality, Tourism and Leisure, 12(2), 673-687.

https://www.jisemjournal.com/download/22_ARCHITECTING_AML_DETECTION_PIPELINES.pdf
https://www.jisemjournal.com/download/22_ARCHITECTING_AML_DETECTION_PIPELINES.pdf

27 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

6. Talluri, Manasa. (2020). Developing Hybrid Mobile Apps Using Ionic and Cordova for

Insurance Platforms. International Journal of Scientific Research in Computer Science,

Engineering and Information Technology. 1175-1185. 10.32628/CSEIT2063239.

7. Niranjan Reddy Rachamala. (2022,February). OPTIMIZING TERADATA, HIVE SQL,

AND PYSPARK FOR ENTERPRISE-SCALE FINANCIAL WORKLOADS WITH

DISTRIBUTED AND PARALLEL COMPUTING . Journal of Computational Analysis and

Applications (JoCAAA), 30(2), 730–743. Retrieved from

https://www.eudoxuspress.com/index.php/pub/article/view/3441

8. Sukesh Reddy Kotha. (2023). End-to-End Automation of Business Reporting with Alteryx

and Python. International Journal on Recent and Innovation Trends in Computing and

Communication, 11(3), 778–787. Retrieved from

https://ijritcc.org/index.php/ijritcc/article/view/11721

9. Talluri, Manasa. (2021). Responsive Web Design for Cross-Platform Healthcare Portals.

International Journal on Recent and Innovation Trends in Computing and Communication. 9.

34-41. 10.17762/ijritcc.v9i2.11708.

10. Niranjan Reddy Rachamala. (2022,June). DEVOPS IN DATA ENGINEERING: USING

JENKINS, LIQUIBASE AND UDEPLOY FOR CODE RELEASES. International Journal of

Communication Networks and Information Security (IJCNIS), 14(3), 1232–1240. Retrieved

from https://ijcnis.org/index.php/ijcnis/article/view/8501

11. Rachamala, N. R. (2021, March). Airflow Dag Automation in Distributed Etl Environments.

International Journal on Recent and Innovation Trends in Computing and Communication,

9(3), 87–91. https://doi.org/10.17762/ijritcc.v9i3.11707

https://ijritcc.org/index.php/ijritcc/article/view/11707/8962

12. Yogesh Gadhiya (2023) Real-Time Workforce Health and Safety Optimization through IoT-

Enabled Monitoring Systems. Frontiers in Health Informatics. 12, 388-400.Retrived from

https://healthinformaticsjournal.com/downloads/files/2023388.pdf

13. Yogesh Gadhiya. (2022,March). Designing Cross-Platform Software for Seamless Drug and

Alcohol Compliance Reporting. International Journal of Research Radicals in

Multidisciplinary Fields, ISSN: 2960-043X, 1(1), 116–125. Retrieved from

https://www.researchradicals.com/index.php/rr/article/view/167

14. Yogesh Gadhiya , " Building Predictive Systems for Workforce Compliance with Regulatory

Mandates" International Journal of Scientific Research in Computer Science, Engineering

and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 7, Issue 5, pp.138-

146, September-October-2021.Retrived from

https://ijsrcseit.com/home/issue/view/article.php?id=CSEIT217540

15. Yogesh Gadhiya , " Blockchain for Secure and Transparent Background Check

Management" International Journal of Scientific Research in Computer Science, Engineering

and Information Technology(IJSRCSEIT), ISSN : 2456-3307, Volume 6, Issue 3, pp.1157-

1163, May-June-2020. Available at doi : https://doi.org/10.32628/CSEIT2063229. Retrived

from https://ijsrcseit.com/home/issue/view/article.php?id=CSEIT2063229

16. Talluri, M., & Rachamala, N. R. (2023, July). Orchestrating frontend and backend

integration in AIenhanced BI systems. International Journal of Intelligent Systems and

Applications in Engineering (IJISAE), 11(9s), 850–858.

https://doi.org/10.17762/ijisae.v11i9s.7768. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/7768.

17. Rachamala, N. R. (2022,Jan). Agile delivery models for data-driven UI applications in

regulated industries. Analysis and Metaphysics, 21(1), 1–16.

https://analysisandmetaphysics.com/index.php/journal/article/view/160

https://www.eudoxuspress.com/index.php/pub/article/view/3441
https://analysisandmetaphysics.com/index.php/journal/article/view/160

28 Journal of Engineering, Mechanics and Architecture www. grnjournal.us

18. SUKESH REDDY KOTHA. (2023). AI DRIVEN DATA ENRICHMENT PIPELINES IN

ENTERPRISE SHIPPING AND LOGISTICS SYSTEM. Journal of Computational Analysis

and Applications (JoCAAA), 31(4), 1590–1604. Retrieved from

https://eudoxuspress.com/index.php/pub/article/view/3486

