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ABSTRACT 

As the limitations of silicon-based CMOS technologies become 
increasingly pronounced at sub-7 nm nodes, alternative transistor 
architectures and logic paradigms are gaining traction. Among these, 
graphene nanoribbon field-effect transistors (GNRFETs) offer 
promising prospects for implementing multi-valued logic systems, 
particularly ternary logic, due to their exceptional electrical, thermal, 
and scaling characteristics. This literature survey investigates the 
state-of-the-art in GNRFET research with a specific focus on their 
application in ternary logic circuits. Key developments in GNRFET-
based gate design, digital building blocks, and simulation 
methodologies are reviewed, alongside their performance advantages 
in terms of power, delay, and scalability over conventional 
MOSFETs. As a case study, a novel 26-transistor 1-trit ternary 
multiplier architecture is introduced, demonstrating the potential of 
GNRFETs in compact, high-efficiency ternary computing systems. 
The review consolidates existing knowledge while highlighting 
future research directions for integrating GNRFET-based ternary 
logic into ultra-low-power VLSI design. 
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INTRODUCTION 

Digital system designers are turning to multi-valued 
logic (MVL), particularly ternary logic, as silicon 
field-effect transistors face growing scaling issues. 
Among post-MOSFET technologies, the graphene 
nanoribbon field-effect transistor (GNRFET) stands 
out as a strong contender for ternary logic 
implementation. In addition to highlighting the 
exceptional qualities of GNRFET technology, this 
work explores the computational complexities of 
ternary logic and presents a revolutionary GNRFET-
based 1-tritternary multiplier (TMUL) that requires 
just 26 transistors. High speed, low power 
consumption, small size, and reliable chip design are 
the main goals of a VLSI engineer. Conventional 
silicon-based devices that follow Moore's law, such 
as MOSFETs and Fin-shaped field-effect transistors 
(F in FET), have significant scaling issues. As a 
result, post-silicon technologies such as graphene 
nanoribbon field-effect transistor (GNRFET), carbon 
nanotube field- effect transistor (CNTFET), and 
single-electron transfer (SET) are being studied. [1] 

 
For short nanoscale architectures, there is a growing 
interest in alternate logic technologies. Given that 
these structures are essential components of digital 
integrated circuits, logic gates, complete adders, and 
D-latch designs based on graphene nanoribbon field 
effect transistors (GNRFETs) at 7 nm technology 
nodes were described. First, GNRFETs were used to 
implement NOT, NOR, and NAND gates. Next, 
GNRFETs were used to design CMOS logic circuits 
for a 28T complete adder and an 18T D-latch. Using 
HSPICE simulations, the initial outcome of this work 
demonstrated that the logic circuits using GNRFETs 
had an average power consumption that was 78.6% 
lower than those constructed with traditional Si-based 
MOSFETs. Likewise, the logic circuits using 
GNRFETs were found to have a latency advantage of 
be 53.2% lower than those using Si-based MOSFET 
counterparts. In addition, a deep learning model was 
developed to model both the power consumption and 
the propagation delay of GNRFET-based logic 
inverters. As the second result, it was demonstrated 
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that the developed deep learning model could 
accurately represent the power consumption and 
delay of GNRFET-based logic circuits with the 
coefficient of determination[2] 

(R2)values in the range of 0.86 and 0.99. The ability 
of GNRFETs to scale down to atomic dimensions is 
one of their key advantages. Transistors with 
incredibly small gate width and length sizes can be 
fabricated thanks to the tight control over device 
dimensions that the nano-sized width of GNRs offers. 
This scalability creates new opportunities for 
extremely large-scale integrated circuits with low 
power consumption and excellent performance. 

[Moore's law, which states that "the number of 
transistors on a chip doubles after every 18 

months," changed the course of the electronics 
industry. The channel length is decreasing at the same 
time that the chip capacity has increased. As the 
density of logic circuits doubles with each generation, 
the exponential trend of decreasing silicon transistors 
has improved device performance while also 
decreasing device density. Although the memory 
capacity has increased fourfold and the working has 
been improved by almost 40%, other factors must be 
taken into account because problems with future 
fundamental limits arise as metal oxide 
semiconductor field-effect transistors (MOSFETs) are 
scaled down. It is difficult to keep up with Moore's 
concept at below 7 nm technology due to a number of 
issues with silicon-based technology, such as mobility 
degradation and short channel effects (SCEs) do pant 
fluctuations. For these reasons, carbon-based 
technology is being researched as a possible 
replacement for silicon-based complementary metal-
oxide semiconductors (CMOS).Reducing the device's 
size is one of the many issues facing current CMOS- 
based technology. A poor dielectric performance 
results from the gate oxide layer addressing the gate 
leakage current as it is slimmed to less than 3 nm[3]. 
Because of its remarkable carrier mobility, high 
carrier concentration, high thermal conductivity, and 
thin planar structure, graphene—a single atomic layer 
of carbon sheet in a honeycomb lattice can surpass 
state-of-the-art silicon in numerous applications. High 
carrier velocity and high carrier concentration are 
provided by graphene's carrier transport, which is 
comparable to that of massless particles[5-6]. Li-
passivation in zigzag GaN nanoribbons significantly 
modifies their electronic properties, enhancing Fermi 
velocity and reducing effective mass to improve 
carrier mobility. DFT investigations further show 
strong gas adsorption and charge transfer, 
highlighting their potential as high-performance 
nanosensors[7-8]. 

Nano ribbons, also known as nano graphene ribbons 
or nano graphite ribbons, and frequently shortened to 
GNRs, are very thin (less than 50 nm) graphene 
strips. In order to investigate the edge and nanoscale 
size effect in graphene, Mistake Fajita and co-authors 
presented graphene ribbons as a theoretical model[9-
10]. 

Alongside its plane, graphene efficiently conducts 
power and heat. The fabric firmly absorbs smolder at 
all significant wavelengths, which is consistent with 
graphite's dark hue. Nevertheless, due to its 
exceptional thinness, graphene sheets are nearly 
instantaneous. Furthermore, the highest grounded 
metal of similar thickness is many times less 
grounded than this fabric. Because of its 
extraordinarily high elasticity, electric conductivity, 
transparency, and status as the world's thinnest two-
dimensional fabric, graphene has emerged as a crucial 
and advantageous nanomaterial. The global graphene 
market grew to be worth $9 million, with the vast 
majority of enthusiasts pursuing cutting-edge trends 
in semiconductors, devices, and electric-powered 
batteries[11-12]. 

DFT-based studies demonstrate that Indium Nitride 
nanoribbons can effectively detect gases like CO, 
CO₂, NO, and NO₂ due to notable charge transfer and 
band structure modulation. Similarly, Scandium 
Nitride monolayers show strong adsorption sensitivity 
toward toxic gases such as NH₃, AsH₃, BF₃, and BCl₃. 
Zigzag silicon carbide nanoribbons exhibit enhanced 
gas sensing performance through improved electronic 
response to hazardous gas molecules, making them 
promising for advanced sensor applications[13-15]. 

With the possibility for carbon-based materials to 
displace silicon-based complementary metal-oxide 
semiconductor technology, Moore's law's upward 
trend has extended into the future. Quantum-dot 
cellular automata, graphene nanoribbon field-effect 
transistors (GNRFETs), carbon nanotube field-effect 
transistors, and nanowire transistors are some of these 
substitutes. The development of graphene, its 
production method, and grapheme-based field-effect 
transistor device architectures are reviewed in this 
work. Graphene's structural, electrical, and thermal 
characteristics provide it a wide range of 
characteristics. This study provides a brief overview 
of the techniques used to fabricate GNRFETs. Strong 
ballistic transport, a high current ratio, improved 
compatibility with high K 

dielectrics, high electron mobility, dependability, 
scalability, and trans conductance are just a few of the 
exceptional electrical characteristics that underpin 
GNRFETs. GNRFET architectures are examined for 
a number of factors that aid in tracking the 
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enhancement of GNRFET device performance, such 
as the Ion/Ioff ratio, sub threshold swing, oxide 
thickness, high K dielectrics, etc. To give researchers 
a better understanding of how changes affect device 
performance, a comparison of the structures is 
provided. This report also includes the small model 
used to simulate GNRFET- based devices. There are 
numerous uses for GNRFET-based devices in the 
modern world. A number of current GNRFET-based 
device applications are also reported in this work[16-
17]. 

Density Functional Theory (DFT) investigations 
reveal that Cu and Fe doping in boron nitride 
nanoribbons (BNNRs) significantly enhances their 
electrical conductivity, making them suitable 
candidates for nanoscale interconnects in advanced 
integrated circuits. Ab-initio studies on aluminum 
nitride nanoribbons (AlNNRs) demonstrate their 
potential in implementing reconfigurable logic gates 
due to tunable electronic properties under external 
stimuli. Additionally, the design of a FinFET-based 
operational amplifier (Op-Amp) using 22 nm high-k 
dielectric technology shows promising results in 
reducing leakage currents and enhancing 
performance, offering a robust solution for low-
power, high-efficiency analog circuit applications[18-
20]  

The power and delay performance of graphene 
nanoribbon field effect transistors (GNRFETs) in all-
graphene architecture are assessed in this research in 
relation to edge roughness. The multi-channel GNR 
FET's equivalent circuit model is created by taking 
into account the effects of line-edge roughness on the 
transport of carriers in graphene nanoribbon, as well 
as the thermionic emission and band-to-band-
tunneling (BTBT) of carriers. According to our 
findings, ideal-edge GNRFETs perform better than 
Si-CMOS technology in terms of power and delay at 
scaled supply voltages. The performance of GNRFET 
circuits is severely hampered by edge roughness, 
though, to the point where its 320-fold smaller 
energy-delay product at VDD = 0.4V rises to 10% 
and 40% of Si-CMOS for 

roughness amplitudes of 0.04 and 0.1, respectively. 
GNR W W By sharing the gate, source, drain, and 
substrate electrodes among all independent ribbons, 
as well as two parasitic capacitances (CGD and CGS) 
for fringing fields between the gate and the reservoirs, 
the multi-channel GNRFET—which is made up of 
several parallel graphene nanoribbons—can be 
realized[21-22]. 

This work presents the design and modeling of a 
triple cascade operational trans conductance amplifier 
(TCOTA). Carbon nanotube field effect transistors 

(CNTFETs) and 45 nm MOSFETs are used in the 
construction of these suggested TCOTAs. The 
proposed architectures utilize both conventional 
MOSFETs and CNTFETs because they are hybrid in 
nature. It is evident from the simulation analysis of 
the proposed TCOTAs that the hybrid devices 
outperform the standard devices. The DC gain, 
bandwidth, and power consumption of the proposed 
hybrid devices have been determined to be much 
better than those of conventional devices. By 
adjusting the quantity of CNTs, the performance of 
the proposed TCOTAs can be further tailored[23-24]. 

We used unzipped multiwall carbon nanotubes to 
create suspended few layer (1-3 layer) graphene 
nanoribbon field effect transistors. The inherent 
bipolar transfer property of graphene is shown by 
electrical transport studies, which demonstrate that 
current annealing efficiently eliminates contaminants 
on the suspended graphene nanoribbons[25-26]. 

Due to the quantum confinement effect and edge 
effect, the width, border configuration, and 
heteroatomic doping of quasi-one-dimensional 
grapheme nanoribbons (GNRs) are all strongly 
correlated with their electrical structure. As a result, 
GNRs have unique optical, magnetic, and electrical 
properties. Advances in GNR preparation 
technologies have led to the preparation and study of 
GNRs with various architectures. According to the 
results, GNRs have favorable photoelectric 
properties, opening up a wide range of potential uses 
in dissipative microelectronic devices and quantum 
computing[27-28]. 

The symmetric valence band and linear conduction 
band of graphene, a monolayer of carbon atoms, meet 
at the Fermi spots, which are the corners of the 
Brillion zone. Graphene has a high mobility because 
its electrons act like mass-less fermions and have a 
lengthy mean free path. However, graphene's 
negligible bandgap makes it especially inappropriate 
for transistor applications. Etching the graphene sheet 
in thin strips, or graphene nano ribbon (GNR), is one 
way to get around this issue. A GNR's band gap and 
width are inversely correlated. Graphene nano 
ribbons are a viable option for the upcoming 
generation of transistors due to their superior 
transport characteristics[29-32]. A noninvasive 
method to determine fetal oxygen saturation using 
photoplethysmogram (PPG) technology leverages 
optical signals to monitor blood oxygen levels 
without direct contact, ensuring safe and continuous 
prenatal assessment. Complementing this, a novel 
Voltage-Controlled Oscillator (VCO) design with 
output peak-to-peak control introduces improved 
signal stability and amplitude tuning, making it highly 
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suitable for precision analog and communication 
circuits where waveform consistency is critical[33-
34]. 

Conclusion: 

The continuous miniaturization of electronic 
components in accordance with Moore’s Law is 
becoming increasingly untenable with traditional 
silicon-based CMOS technology, especially at sub-7 
nm technology nodes. This literature survey has 
highlighted GNRFETs as a robust alternative due to 
their exceptional electrical properties, dimensional 
scalability, and compatibility with advanced logic 
systems. The surveyed works collectively 
demonstrate that GNRFETs outperform silicon-based 
MOSFETs in terms of power consumption, delay, and 
device density, making them well-suited for ultra-
scaled logic applications. Furthermore, the review 
provides compelling evidence for the effectiveness of 
GNRFETs in implementing ternary logic, with a 
special focus on the proposed 26-transistor 1-trit 
ternary multiplier. This novel design exemplifies the 
compactness and computational efficiency that 
GNRFET-based architectures can offer. As 
fabrication techniques improve and integration 
challenges are addressed, GNRFETs hold significant 
promise for redefining the landscape of VLSI design 
and enabling the development of energy-efficient, 
high-performance computing systems. 
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