
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 2 | Jan-Feb 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1416

An Improved Decision Support System for

Software Evaluation Using Weighted Sum Technique

Benjamin, Ubokobong Effiong

Department of Computer Science, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria

ABSTRACT

This research study focused on an improved decision

support system for software evaluation using weighted sum.

Given the increase in the number of software packages in the

market today, there is a challenge of knowing which is most

effective to solve the problems of an organization without

creating problems. It is in view of the need to select the most

appropriate software among alternatives that gave rise to

the concept of software evaluation. Software evaluation is

the process of assessing the quality of different software

systems so as to choose the most productive one. Evaluating

and selecting software packages that meet an organization’s

requirements is a difficult software engineering process.

Selection of a wrong software package can turn out to be

costly and adversely affect business processes. One of the

most common techniques used for evaluating software

components is weighted sum. In this technique, the criteria

for evaluating the software are clearly defined and values are

assigned as weight to each criterion. The total of the weight

placed on each criterion reveals the level of effectiveness of

the software component. For the scope of this study, the

evaluation is carried out under three different criteria

categories which are; vendor, hardware/software

requirements and cost/benefits.

KEYWORDS: Improved, Decision Support System, Software

Evaluation, and Weighted Sum Technique

1. Introduction

A successful evaluation is not simply picking a product based

on intuition. It involves a formal process, the right mixture of

evaluators, and a specific quantifiable set of evaluation

criteria. The process should include how to handle

differences in scoring by the evaluators. The task of choosing

a software component for a specific function in order to

integrate it in a software system is a typical case of multi-

criteria decision making that frequently occurs in Software

Engineering. Consider a decision maker with a set of

components to fulfill a function in a software system, for

example creating digital signatures on files. A number of

decision factors will come into play such as functional

suitability, security, performance efficiency, interoperability

and costs. Some of these may pose conflicts: For example,

increased security may come at the price of decreased

performance efficiency or increased price. The decision

maker has to follow a trustworthy and repeatable procedure

to choose the component that best fulfills the objectives at

hand (Becker et al, 2013). The domain of component

selection presents an interesting case of multiple criteria

decision support systems (MCDSS) since it exhibits a number

of peculiarities:

1. A comparably large number of decisions of a very

similar kind is made.

2. The number of alternatives and decision criteria can be

quite large.

3. The decision criteria are rather well understood in

terms of the facets and quality aspects that are

evaluated.

Software can be evaluated with respect to different aspects,

for example, functionality, reliability, usability, efficiency,

maintainability, portability. In earlier times evaluation of

software took place at the end of the developing phase, using

experimental designs and statistical analysis, evaluation is

nowadays used as a tool for information gathering within

iterative design: “Explicit human-factors evaluations of early

interactive systems (when they were done at all) were

poorly integrated with development and therefore

ineffective. They tended to be done too late for any

substantial changes to the system still be feasible and, in

common with other human-factors contributions to

development, they were often unfavourably received.

Decision Supports Systems (DSS) are computer-based

information systems designed in such a way that help

managers to select one of the many alternative solutions to a

problem. It is possible to automate some of the decision-

making processes in a large, computer-based DSS which is

sophisticated and analyze huge amount of information fast.

It helps corporate to increase market share, reduce costs,

increase profitability and enhance quality. The nature of

problem itself plays the main role in a process of decision

making.

1.1. Statement of the Problem

As institutions and organizations spend huge amount on

Enterprise resource planning (ERP) packages and other

computer software that cost hundreds of thousands and

even millions of dollars, purchasing a software solution is a

high expenditure activity that consumes a significant portion

of companies’ capital budgets. Selecting the right solution is

an exhausting process for companies. Therefore, selecting a

software package that meets the requirements needs a full

examination of many conflicting factors and it is a difficult

task. Most times the software bought do not meet the needs

of the institution or organization despite the huge amount.

To avoid the problem of software ineffectiveness, this has led

researchers to investigate better ways of evaluating and

selecting software packages.

1.2. Aim and Objectives of the Study

The aim of the study is to develop an improved decision

support system for software evaluation that will help

organizations to determine the effectiveness of a software

product based on its features and capabilities. The following

are the objectives of the study:

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1417

1. To design a decision support system for software

evaluation using quantitative method for software

evaluation and selection.

2. To develop a software that will assess the software

features to determine their level of effectiveness.

3. To compare a system that will maintain record of

software evaluation records.

1.3. Scope/Significance of the Study

This study covers advanced decision support system for

software evaluation using weighted sum. It is limited to the

capturing of the weighted sum of software features and the

determination of the best software option based on the total

weight of its features. Evaluation is based on three different

criteria categories which are: The vendor, hardware/

software requirements and cost/benefits of the software

system.

However, the significance of the study is that it will help

institutions and organizations evaluate the effectiveness of a

software product. The study will also serve as a useful

reference material to other researchers seeking for

information concerning the subject.

2. LITERATURE REVIEW

2.1. Software Selection using Decision Support

Systems

According to Bandor (2006), when performing purchase

analysis and selecting a product as part of a software

acquisition strategy, most organizations will consider

primarily the requirements (the ability of the product to

meet the need) and the cost. The method used for the

analysis and selection activities can range from the use of

basic intuition to counting the number of requirements

fulfilled, or something in between. The selection and

evaluation of the product must be done in a consistent,

quantifiable manner to be effective. By using a formal

method, it is possible to mix very different criteria into a

cohesive decision; the justification for the selection decision

is not just based on technical, intuitive, or political factors.

Decision making is considered one of the most critical

activities done in organizations. To support this complex

process for individuals, a variety of independent, standalone

information systems called Decision Support Systems (DSSs)

have been developed in the two last decades.

2.2. Decision Support System Overview

Decision support systems (DSS) emerged in the 1970. It is

defined as a computer-based system designed to actively

interact with an individual decision maker in order to assist

him to make better decisions based on information obtained.

The decision process is broadly defined as a bundle of

correlated tasks that include: gathering, interpreting and

exchanging information; creating and identifying scenarios,

choosing among alternatives, and implementing and

monitoring a choice. Briefly, the decision process refers to

some techniques or processing rules aiming at structuring

the context, timing or content of communication. DSS was

designed to solve ill or non-structured decision problems.

Problems where priorities, judgements, intuitions and

experience of the decision maker are essential, where the

sequence of operations such as searching for a solution,

formalization and structuring of problem is not beforehand

known, when criteria for the decision making are numerous,

in conflict or hard dependent on the perception of the user

and where resolution must be acquired at restricted time

(Bhargadav and Power, 2015).

2.3. Multi-Criteria Decision Support System (MCDSS)

for Software Component Selection

According to Becker et al (2013), numerous approaches have

been proposed for the general problem of software

component evaluation and selection. Most methods for

component selection employ a variation of the standard five

steps:

1. Define criteria

2. Search for components

3. Shortlist candidates

4. Evaluate candidates

5. Analyze results and choose component

Frequently employed approaches for evaluating and

selecting components include the usage of simple scoring

and weighted sum approaches, the Analytic Hierarchy

Process (AHP), or iterative filtering. Others use methods

based on utility analysis to tackle the incommensurability of

decision factors. In particular in cases of strict requirements

on trustworthiness and reliable selection of components,

evidence-based decisions using controlled testing are

recommended (Becker and Rauber, 2010). For the scenario

of component selection, using goal-based requirements

modeling and utility analysis is especially suitable for a

number of reasons: The decision models strongly build on

quality attributes that lend themselves to requirements

engineering approaches; the anomaly of rank reversal

should be avoided; and the number of analytical steps that

for example the application of the AHP requires is in many

cases prohibitive. Still, the problematic aspect of all

approaches for component selection that can be considered

trustworthy, i.e. evidence-based and formalized, is the high

complexity and effort involved in creating suitable evidence.

This begins with the unambiguous specification of criteria

for quality attributes, which can be quite challenging, and

extends to the evaluation of components, i.e. the process of

assigning values to decision criteria.

2.4. Software Evaluation Techniques

Software evaluation is multi-criteria decision making

problem that refers to making preference decisions over the

available alternatives. At this point, the various software

evaluation techniques are discussed and their strengths and

weaknesses are examined.

1. Analytic Hierarchy Process (AHP) Software

Evaluation Technique

AHP has been widely used for evaluation of the software

packages. AHP has been identified as an important approach

to multi-criteria decision-making problems of choice and

prioritization. AHP is based on a hierarchical framework of

criteria. The upper level deals with the goal of the selection

process. The next level defines the major factors which are

subdivided into their constituents in lower levels of

hierarchy. The bottom level contains the alternatives to be

analyzed.

Strengths of Analytical Hierarchy Process (AHP):

1. AHP enables decision makers to structure a decision

making problem into a hierarchy, helping them to

understand and simplify the problem.

2. It is flexible and powerful tool for handling both

qualitative and quantitative multi-criteria problems.

3. AHP procedures are applicable to individual and group

decision making.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1418

Weaknesses of Analytical Hierarchy Process (AHP):

1. AHP is time consuming because of the mathematical

calculations and number of pair-wise comparisons that

increases as the number of alternatives and criteria

increases.

2. The decision makers need to re-evaluate alternatives

when the number of criteria or alternatives are changed.

3. Ranking of alternatives depends on the alternatives

considered for evaluation hence adding or deleting

alternatives can lead to changes in the final rank.

2. Feature Analysis Software Evaluation Technique

Feature analysis technique for software evaluation uses

different software feature criteria to evaluate the software

such as:

Process Related Criteria

1. Development lifecycle: What development lifecycle best

describes the methodology (e.g. waterfall)?

2. Coverage of the lifecycle: What phases of the lifecycle

are covered by the methodology (e.g. analysis, design,

and implementation)?

3. Development approach: What development approach is

supported (i.e. top-down or bottom-up)?

4. Application domain: Is the methodology applicable to a

specific or multiple application domains?

5. Scope of effort: What size of MAS is the methodology

suited for (i.e. small, medium, or large)?

6. Agent nature: Does the methodology support only

homogeneous agents, or heterogeneous agents?

7. Support for verification and validation: Does the

methodology contain rules to allow for the verification

and validation of correctness of developed models and

specifications?

Strength of Feature Analysis Software Evaluation

Technique:

1. Evaluation can be done to any required level of detail by

organizing evaluation in different ways such as

screening mode, case study, formal experiment and

survey.

2. It is used not only for technical evaluation but also for

evaluation of viability of supplier.

Weakness of Feature Analysis Software Evaluation

Technique:

1. Producing the single number from the individual scores

may be misleading because many different

combinations of numbers can produce the same

aggregate score.

3. Weighted Average Sum (WAS) Software Evaluation

Technique

Another technique used for evaluation of software package is

the weighted scoring method. In this method weights and

rating scales are assigned to each criterion. The weight

reflects the relative importance of each of the criteria while

the rating scale indicates how easily each package is able to

meet the specific criterion. The rating scales are then

multiplied by weight factor of each criterion. Using this

scheme a score is calculated for every criterion for each tool.

These scores are then totaled to produce a score for each

criteria category and the average is also computed. Finally,

the categorical scores are compared to determine the

highest.

There are many different methods for deriving risk values,

but descriptions of these methods are out of scope for this

report. Additional references on risk can be found in the

bibliography. Regardless of which risk calculation method

you choose to follow, it is important to keep in mind that the

scoring mechanism presented above is based on a “higher is

better” score, and most risk calculations are based on a

“lower is better” score. The two methods should be used

individually and not combined into a single score for

evaluation purposes. Table 2.1 shows an example legend for

scoring when using weighted average sum evaluation

technique.

Table 2.1: Example legend for scoring requirements

Source: Bandor (2006)

Strengths of Weighted Average Sum Software Evaluation Technique:

1. Main advantage of WAS is its ease of use.

Weaknesses of Weighted Average Sum Software Evaluation Technique:

1. Weights to the attribute are assigned arbitrary and it is very difficult to assign weight when number of criteria is high.

2. To obtain a score using this method a common numerical scaling is required.

3. Difficulties emerge when WAS is applied to multi-dimensional MCDM problems.

2.5. Weighting Sum Software Product Selection Factors

Before selecting specific products, institutions should consider each of the factors or criteria for evaluation, balancing as far as

possible the merits of specific products against the general features of the system. The selection of a specific product requires

attention to:

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1419

1. Software reliability.

2. Availability of technical support by the institution to the users.

3. Availability of support by the software supplier to the institution and the users.

4. Cost to the institution (i.e., local server support).

A quantification approach, using weighted average mean can be used for the software product evaluation. The evaluation

responses may be weighted using points scoring criteria and scorecards. Results can then be compared quantitatively

according to the evaluation totals and average. The review and the analysis of the responses are recommended to be performed

in the following sequence.

1. Analyze each evaluation response using a ‘score card’.

2. Review each requirement listed in the score card and check the answer(s). It is recommended to use a simple ‘Yes or No’

marking, or a combined weighting and scoring method to indicate to what degree the score card requirements are met by

the evaluator.

3. Repeat the process, using a new scorecard for each software product.

4. The evaluation criteria have to formalize the requirements towards the software products.

Table 2.2: Matrix weighted evaluation score card

Source: Stoilova and Stoilov, (2005)

By using a defined and understood set of discrete values, the subjectivity of the evaluation is significantly reduced. The raw

values can be based on the information shown in Table 2.3. There are only five values used, ranging from 1.0 to -1.0 in

increments of 0.5. Note the use of negative values and the effects on the scoring. Instead of just assigning a value of 0, the use of

negative values permits the application of a “penalty” value where not meeting the criterion would be detrimental.

Table 2.3: Scoring legend for software criteria evaluation

Score Value Definition

1.0 Alternative fully satisfies business requirement or decision criteria

0.5 Alternative partially satisfies business requirement or decision criteria

0.0
Unknown or null/balanced (The alternative neither satisfies nor dissatisfies

business requirement or decision criterion)

-0.5 Alternative partially dissatisfies requirement or decision criterion

-1.0 Alternative fully dissatisfies requirement or decision criterion

2.6. Software Evaluation Models

Balsamo et al (2006) in contrast to software evaluation techniques, software evaluation models determine the frame of the

evaluation, which consists of:

1. Choosing techniques appropriate for the life cycle, and

2. Setting the focus with respect to the objects under study and the measurement criteria.

Evaluation models may provide a standardized treatment of establishing (potentially) successful procedures in the practice of

evaluation, and are a necessary tool for a comparing different types of software evaluation. Any descriptive evaluation

procedure must be combined with some kind of predictive technique to result in an applicable evaluation model; furthermore,

some preparatory steps are necessary. For example, the evaluation model, which consists of the IsoMetric questionnaire as a

basic technique, standardizes the preparatory steps “choosing the tasks” and “choosing the user group(s)”; it also standardizes

the preparation of the report by an expert, and the structure of a “usability review”, which consists of a standardized result

presentation and a Walkthrough technique. There are three classes of evaluation models:

Method Driven Models: These models offer a frame for software evaluation based on a collection of techniques. The models

are only applicable if the evaluation procedures fits perfectly the problems encountered by the user and the system developers.

Criteria Driven Models: More or less abstract criteria are defined and refined; the evaluation in these models aims at a

measurement of the criteria.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1420

Method Driven Evaluation Models: The centre of method driven evaluation models consists of the arrangement of evaluation

techniques, amended by the regulation of preparatory and subsequent tasks. A method driven evaluation model can be

perceived as a complex evaluation technique as well. An example is EVADIS (Evaluation of Dialogue Systems II) , which is well

tested for office automation software. The EVADIS II model combines interviews, simplified task analysis, and expert

judgement in the following steps:

1. Installation and exploration of the software.

2. Analysis and relevance weightings of the tasks, construction of test tasks.

3. Analysis of the user characteristics. Selection of relevant ergonomic test items.

4. Evaluation of the software, based on the results of the first three steps.

5. Interpretation of the results and composing a test report.

The first three preparatory steps can be handled in parallel; they result in testing tasks and a list of ranked ergonomic

evaluation criteria, mainly based on the principles of ISO 9241 (Part 10). The ranks of the criteria are deduced from the user

profile, and they determine the test items which are chosen from an item database. In step four, the testing tasks are evaluated

by an expert who steps through the tasks, and answers the questions formulated in the ergonomic items. The recorded answers

form the basis for the test report. Every step of EVADIS II is supported by a large amount of supporting material such as

databases and guidelines, which allows a domain expert with only a small amount of knowledge of software evaluation to form

a well-founded opinion on the topic.

2.7. Empirical Related Work

Koziolek (2009) surveyed the state-of-the-art in research of performance evaluation methods for component-based software

systems. The survey classified the approaches according to the expressiveness of their performance modelling language and

critically evaluated the benefits and drawbacks. The area of performance evaluations for component-based software

engineering has significantly matured over the last decade. Several issues have been understood as good engineering practice

and should influence the creation of new approaches. A mixed approach, where individual components as well as the

deployment platform are measured and the application architecture and the usage profile are modelled, is advantageous to deal

with the complexity of the deployment plat-form while at the same time enabling early life-cycle performance predictions. The

necessary parameterized performance modeling language for software components has become more clear. Including

benchmarking results for component connectors and middleware features into application models using model completions

exploits the benefits of model-driven development for performance evaluation.

The survey conducted by (Koziolek, 2009) benefits both researchers and practitioners. Re-searchers can orient themselves

with the proposed classification scheme and assess new approaches in the future.

They can select methods according to their specific situation and thus increase the technology transfer from research to

practice.

Babar et al (2015), conducted a study on a framework for classifying and comparing software architecture evaluation methods.

The researchers opined that different software engineering communities have developed different techniques for

characterizing their respective quality attributes and the methods to evaluate software systems with respect to that particular

quality attribute, e.g., real-time, reliability, and performance. These assessment techniques study a specific quality attribute in

isolation. In reality, however, quality attributes interact with each other. For example, there is generally a conflict between

configurability and performance; performance also impacts modifiability, availability affects safety, security conflicts with

usability, and each quality attribute impacts cost. That is why it is important to find an appropriate balance of quality attributes

in order to develop a successful product. One of the most significant features of method differentiation and classification is the

number of quality attributes a method deals with.

The software architecture (SA) evaluation methods specifically studied by (Babar et al, 2015) are: Scenario-based Architecture

Analysis Method (SAAM), Architecture Tradeoff Analysis Method (ATAM), Active Reviews for Intermediate Design (ARID),

SAAM for Evolution and Reusability (SAAMER), Architecture-Level Modifiability Analysis (ALMA), Architecture-Level

Prediction of Software Maintenance (ALPSM), Scenario-Based Architecture Reengineering (SBAR), SAAM for Complex

Scenarios (SAAMCS), and integrating SAAM in domain-Centric and Reuse-based development (ISAAMCR). These are scenario-

based methods, a category of evaluation methods considered quite mature. There are also some attribute model-based

methods and quantitative models for SA evaluation, but, these methods are still being validated and are considered

complementary techniques to scenario-based methods. There is, however, little consensus on the technical and non-technical

issues that a method should fully address and which of the existing methods is most suitable for a particular issue. There is not

much work done on systematic classification and comparison of the existing methods. Moreover, there is not much guidance on

the desirable features of the evaluation methods and their usefulness.

Software Architecture (SA) evaluation can be performed for a number of purposes, e.g., risk assessment, maintenance cost

prediction, architecture comparison, trade-off analysis and so forth. No one method can be considered as equally good for all

types of assessment objectives as different methods are optimized to achieve different evaluation goals. The common goal of

most of the evaluation methods is to evaluate the potential of the designed architecture to facilitate or inhibit the achievement

of the required quality attributes. For example, some architectural styles, e.g., layered architectures, are less suitable for

performance sensitive systems, even though they usually result in highly flexible and maintainable systems. In order to achieve

maximum benefit from an assessment activity, the goals of the evaluation need to be explicitly defined. The goals of assessment

help software architect make a number of critical decisions with regard to selection of a specific method and deliverable

required.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1421

There is at least one common goal found in all surveyed methods, which is prediction-based assessment of the quality of a

system at the architecture level. However, each method has a specific view and different approach to achieve the goal: SAAM

and its variants (specifically SAAMCS and ISAAMCR) are mainly geared to identify the potential architectural risks. However,

SAAMCS focuses on exposing the boundaries of SA with respect to flexibility using complex scenarios, while, ISAAMCR

integrates SAAM in domain-centric reusable development process; SAAMER evaluates the designed SA for evolution and

reusability and provide a framework for SA analysis; ALMA specializes in predicting one quality attribute (i.e., modifiability)

and there are three possible objectives to be pursued: risk assessment, maintenance cost prediction, and SA comparison; ARID

performs suitability analysis of intermediate design artifacts; ATAM identifies and analyses sensitivity and trade-off points as

these can prevent the achievement of a desired quality attribute.

Bandor (2006) also conducted a research on Quantitative Methods for Software Selection and Evaluation. The author was of the

opinion that when performing a “buy” analysis and selecting a product as part of a software acquisition strategy, most

organizations will consider primarily the requirements (the ability of the product to meet the need) and the cost. The method

used for the analysis and selection activities can range from the use of basic intuition to counting the number of requirements

fulfilled, or something in between. The selection and evaluation of the product must be done in a consistent, quantifiable

manner to be effective. By using a formal method, it is possible to mix very different criteria into a cohesive decision; the

justification for the selection decision is not just based on technical, intuitive, or political factors. The report describes various

methods for selecting candidate commercial off-the-shelf packages for further evaluation, possible methods for evaluation, and

other factors besides requirements to be considered. It also describes the use of a decision analysis spreadsheet as one possible

tool for use in the evaluation process.

In addition, Koziolek, (2009) carried out a study on Performance Evaluation of Component-based Software Systems: A Survey.

He believed that Performance prediction and measurement approaches for component-based software systems help software

architects to evaluate their systems based on component performance specifications created by component developers.

Integrating classical performance models such as queuing networks, stochastic Petri nets, or stochastic process algebras, these

approaches additionally exploit benefits of component-based software engineering, such as reuse and division of work.

3. System Analysis and Design

3.1. Research Methodology

The data used for the development of the research was gotten from the internet, textbooks and articles. The contributions of

other researchers on the subject were examined so as to gather relevant information. Questionnaire forms were also issued to

experienced users of the software to be evaluated in order to obtain raw data to ascertain their effectiveness.

The system analysis and design methodology used to analyze the system is Object Oriented Analysis and Design Methodology

(OOADM). OOADM applies object orientation in the analysis and design as a software engineering approach that models a

system as a group of interacting objects. Object oriented analysis and design is the analysis and design of a system from the

object point of view.

3.2. System Analysis

System analysis has to do with examining a system in order to understand its step by step operations so as to identify its

benefits and areas of limitation that require improvements. Analysis of the existing and proposed system is examined at this

point.

3.2.1. Analysis of the Existing System

In the existing system of software evaluation using weighted sum, it is manually carried out on a sheet known as an evaluation

score card. Fig 3.1 below, gives an illustration of how software evaluation is manually done using a score card.

Architecture of the Existing System

Fig 3.1: Architecture of existing system

In the architecture of the existing system shown above, the software to be available is chosen, the opinion of users of the

software is obtained based on the defined criteria. Weighted score values are assigned to the defined criteria and the total

weight sum is computed.

3.2.2. Analysis of the Proposed System

The proposed system is such that it will provide a grading or evaluation interface that will enable users carry out software

evaluation of different software that are of the same application category. The software will be evaluated side by side. The

system will also provide expert system remark on the level of reliability after assessment. The evaluation will be done based on

three different criteria which are:

 Vendor evaluation

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1422

 Hardware/software evaluation

 Cost/benefits evaluation.

Each criterion for software evaluation outline above has sub-criteria that will be assigned evaluation values ranging from 2 to -

2. At the end, the total sum is computed and the percentage sum is also computed. Expert system remark is also provided

indicating which software is better. The evaluation key values and their meaning are shown in figure 3.2 below:

Fig 3.2: Evaluation key values

Architecture of the Proposed System

Fig 3.3: Architecture of proposed system

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1423

3.3. System Design

The system design has to do with the layout of the system and it comprises of the input and output layout and Algorithm design

and program flow chart.

3.3.1. Input layout

Fig 3.4: Software registration input layout

Fig 3.5: Vendor Evaluation input layout

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1424

Fig 3.6: Hardware Software Evaluation input layout

3.3.2. Output Layout

See Appendix B

3.3.3. Algorithm

Step 1: Start

Step 2: Login

Step 3: If login is success goto step 4 else goto step 2

Step 4: Display main menu

Step 5: Input choice

Step 6: If choice is software registration goto step 7 else goto step 8

Step 7: Input registration details and save to database.

Step 8: If choice is reliability evaluation goto step 9 else goto step 12

Step 9: Input evaluation category

Step 10: If evaluation category is vendor goto step 11

Step 11: Select software 1 and 2 and Input vendor evaluation details

Step 12: Compute total weight

Step 13: Compute Percentage of total weight

Step 14: Display expert system decision

Step 15: If evaluation category is hardware/software goto step 16

Step 16: Select software 1 and 2 and Input hardware/software evaluation details

Step 17: Compute total weight

Step 18: Compute Percentage of total weight

Step 19: Display expert system decision

Step 20: If evaluation category is cost/benefits goto step 21

Step 21: Select software 1 and 2 and Input cost/benefits evaluation details

Step 22: Compute total weight

Step 23: Compute Percentage of total weight

Step 24: Display expert system decision

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1425

Step 25: If choice is database records goto step 26

Step 26: Input choice

Step 27: If choice is registered goto step 28

Step 28: Display database of registered software

Step 29: If choice is vendor evaluation goto step 30

Step 30: Display database of vendor evaluation records

Step 31: If choice is hardware/software evaluation goto step 32

Step 32: Display database of hardware/software evaluation records

Step 33: If choice is cost/benefits evaluation goto step 34

Step 34: Display database of cost/benefits evaluation record.

Step 35: If choice is quit goto step 36

Step 36:Stop

4. System Implementation and Documentation

4.1. System Design Diagram

Figure 4.1: System Design Block Diagram

4.2. Choice of Programming Language

The programming language used is Visual BASIC.NET. The

language was chosen because it enables the creation of

applications with a graphical user interface, containing

controls such as text fields, combo box, labels, command

buttons etc.

4.3. Analysis of Modules

The system is made up of four main modules as shown in the

system flow diagram. They are;

Software Registration: This module enables the

registration of software for evaluation

Evaluation: This module aids the evaluation of registered

software. It is made up of three sub-modules namely:

vendor, hardware/software, cost/benefits. These sub

modules are the criteria for evaluating the software, so as to

arrive at a decision.

Database Records: This module aids the user to view the

database records of registered software, vendor evaluation

records, hardware/software evaluation records and

cost/benefits evaluation records.

Quit: This module terminates the program

4.4. Programming Environment

The programming environment used for the development of

the application is windows 7 operating system and the

integrated development environment (IDE) chosen for the

development of the system is Visual BASIC 6.0.

The hardware and software requirements for successful

implementation of the system are stated at this point.

The hardware requirements are;

 Pentium iv computer system

 Super video graphic array monitor

 1 GB RAM

 Keyboard

 Mouse

 Uninterruptible power supply (UPS)

The software requirements are:

 Microsoft Visual Basic 8.0 (Visual Basic.NET)

 Microsoft Access 2003

4.5. Implementation

Implementation is the process of replacing the old system

with the new system. There are four different ways of

replacing the old system with the new system. The reasons

for choosing one implementation type over another depend

upon; how quickly must the changeover happen? How

important is it to prevent data loss? What will the cost of the

changeover be?

Phased implementation: Takes longer to complete the

implementation but the risks to the business are less than

for direct changeover. The new system can be split into

separate working parts, part of the old system is replaced

with the new one until the replaced part is working properly.

Continue the process until the entire old system has been

replaced by the new system.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD20322 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1426

Direct changeover: In this system the old system is no longer

available and everything must run on the new system.

Problems with the new system can cause major problems for

the business, only suitable for non-critical systems.

Parallel Running: Highly fault tolerant, new system and the

old system are used with extra staffs recruited to run the

new system but it is very expensive. Both systems continue

to run until the new system is working properly then the old

one is discarded.

Pilot Running: If the business has many different offices or

sites then this is an option. One single site is chosen and the

old system is replaced with the new system in the same way

as direct changeover but only on one site, the rest of the

business continue to use the old system. Once the new

system is shown to work well in that one ‘pilot’ site then the

new system can replace the old one in the rest of the

company.

The system implementation method recommended and

chosen by the system developer is the parallel running so as

to prevent data loss.

5. Conclusion and Recommendations

5.1. Conclusion

From the foregoing, it can be seen that a successful

evaluation is not simply picking a product based on intuition.

It involves a formal process, the right mixture of evaluators,

and a specific quantifiable set of evaluation criteria. The

process should include how to handle differences in scoring

by the evaluators. Defining the evaluation technique used for

the evaluation is very important.

Weighted sum evaluation technique can be adopted to easily

ascertain the effectiveness of software based on defined

criteria. From the foregoing, it can be seen that,

requirements drive selection criteria, careful consideration

must be given to the identification of selection criteria, pilots

and demonstrations are essential selection tools, product

and technology maturity must be considered. By

systematically analyzing co-occurrence, correlation and

impact of decision criteria across cases, it should be possible

to integrate recommender systems into the decision making

workflow that can provide increased guidance and warn

decision makers of potential risks and opportunities based

on others’ experiences.

5.2. Recommendations

The following recommendations are offered based on the

study:

 More research should be conducted on decision support

system for software evaluation/assessment.

 Software development companies should conduct

survey programs to assess the reliability of their

software product.

 Raw data used for the assessment should be obtained

from users of the software system.

 The criteria utilized in making decision on the

effectiveness of a software should be expanded to

include more aspects so as to improve the reliability

information.

 Proper testing and debugging should be done before

software systems are published or placed in the market.

 Trial versions of software are important for users to

assess the effectiveness of the software.

REFERENCES

[1] Babar, M. A., Liming Zhu, Jeffery, R. (2015). A

Framework for Classifying and Comparing Software

Architecture Evaluation Methods. National ICT

Australia Ltd. and University of New South Wales,

Australia.

[2] Balsamo, S., DiMarco, A. Inverardi, P. and Simeoni, M.

(2004) Model-based performance prediction in

software development: A survey. IEEE Trans. Softw.

Eng., 30(5):295–310, May 2004.

[3] Bandor, Michael S. (2006). Quantitative Methods for

Software Selection and Evaluation Copyright 2006

Carnegie Mellon University Technical Note CMU/SEI-

2006-TN-026 September 2006

[4] Becker, C. and Rauber, (2010) A. Improving

component selection and monitoring with controlled

experimentation and automated measurements.

Information and Software Technology, 52, 641-655

[5] Becker, C. Kraxner, M., Plangg, M., Vienna, A. (2013).

Improving decision support for software component

selection through systematic cross-referencing and

analysis of multiple decision criteria. University of

Technology. 2013 46th Hawaii International

Conference on System Sciences

[6] Bhargava, H. and Power, D. (2015). Decision support

systems and web technologies: A status report.

[7] Koziolek, H. (2009). Performance Evaluation of

Component-based Software Systems: A Survey. ABB

Corporate Research, Industrial Software Systems,

Wallstadter Str. 59, 68526 Ladenburg, Germany

[8] Stoilova, K., Stoilov, T. (2005). Software Evaluation

Approach. European Commission, project №FP6-

027178 VISP, and National Scientific Fund of Bulgaria,

project № ВУ-МИ-108/2005

