
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 4 | May-Jun 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD25091 | Volume – 3 | Issue – 4 | May-Jun 2019 Page 1900

The Impact of Angular Ivy on Web Development:

Faster Rendering and Better Performance

Dr. Rafael Silva1, Ana Carvalho2

1Ph.D. in Telecommunications and Networking, University of São Paulo (USP), São Paulo, Brazil
2Master of Science in Network Infrastructure Management,

Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

How to cite this paper: Dr. Rafael Silva |

Ana Carvalho "The Impact of Angular

Ivy on Web Development: Faster

Rendering and Better Performance"

Published in International Journal of

Trend in Scientific Research and

Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-4, June 2019,

pp.1900-1903, URL:

www.ijtsrd.com/pap

ers/ijtsrd25091.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)

ABSTRACT

Angular is one of the most widely used frameworks for building dynamic,

single-page applications. Its continual evolution brings new features aimed at

enhancing development efficiency and application performance. Among the

most significant updates in recent years is Angular Ivy, a rendering engine

introduced in Angular 9. Ivy brings notable improvements in terms of smaller

bundle sizes, faster rendering times, and better tree-shaking capabilities,

which contribute to enhanced performance and a better developer experience.

This article explores the impact of Angular Ivy on web development by delving

into its core features, comparing it to its predecessor, the View Engine, and

discussing the advantages it brings to developers, including improved

performance, reduced file sizes, and easier debugging. The article further

discusses how these improvements translate into practical benefits for users

and developers alike, offering concrete examples and performance

benchmarks. Finally, it examines potential challenges and considerations when

migrating to Angular Ivy and provides insights into how developers can

leverage its full potential in their web applications.

1. INTRODUCTION

Web development is a rapidly evolving field, with

frameworks constantly improving to meet the needs of

developers and end-users. One of the most significant

advancements in Angular, one of the most popular web

development frameworks, has been the introduction of Ivy, a

new rendering engine introduced in Angular 9. The Ivy

rendering engine brought forth several optimizations aimed

at improving the framework’s performance, enabling

developers to create faster and more efficient web

applications.

Before Ivy, Angular utilized the View Engine, which was

instrumental in rendering Angular applications but had its

limitations, especially in terms of performance and

efficiency. Angular Ivy addresses these issues by reducing

the bundle size, speeding up the rendering process, and

improving other core features like tree-shaking, lazy loading,

and debugging. This article aims to explore the implications

of Angular Ivy on web development by providing an in-depth

analysis of its features, benefits, and real-world impact on

web applications.

2. Understanding Angular Ivy

Angular Ivy is the next-generation rendering engine

introduced in Angular 9, and it fundamentally changes how

Angular applications are compiled and rendered. Ivy

replaces the View Engine, which had served as the default

rendering engine in Angular applications for many years.

With Ivy, Angular developers can now take advantage of

faster rendering times, smaller bundle sizes, and more

efficient application delivery.

At the core of Ivy is its incremental compilation approach,

which focuses on reducing the amount of code generated

during the build process. This is a significant departure from

the View Engine’s approach, where code generation could

become cumbersome and inefficient. Ivy optimizes this by

only compiling what is needed, leading to smaller bundles

and faster load times for users.

Key features of Angular Ivy include:

 Smaller Bundle Sizes: Ivy allows for more efficient

tree-shaking, which removes unused code from the final

build, reducing the overall size of the bundle that needs

to be sent to the browser.

 Faster Rendering: Ivy improves rendering speed by

optimizing how components are rendered and updated,

resulting in faster performance and better

responsiveness.

 Improved Debugging: Ivy introduces better tooling for

debugging Angular applications, making it easier for

developers to track down issues and optimize their

code.

 Backward Compatibility: While Ivy is a complete

rewrite of Angular’s rendering engine, it was designed to

IJTSRD25091

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25091 | Volume – 3 | Issue – 4 | May-Jun 2019 Page 1901

be fully compatible with existing Angular applications,

allowing developers to transition to Ivy without

breaking their codebase.

3. Comparison of Angular Ivy and View Engine

To fully appreciate the impact of Angular Ivy on web

development, it is crucial to compare it with its predecessor,

the View Engine. While both the View Engine and Ivy aim to

render Angular applications, there are several key

differences between the two that have a direct impact on

performance, code size, and developer experience.

A. Compilation and Code Generation

One of the biggest differences between Ivy and the View

Engine is the way each handles the compilation and code

generation process. In the View Engine, Angular uses a static

compilation approach, where the entire application is

compiled into a single output file. This often led to larger

bundle sizes and inefficient handling of code.

In contrast, Ivy uses an incremental compilation strategy,

meaning it compiles only the parts of the application that

have changed or are needed. This results in a much smaller

and more optimized output, reducing the final bundle size

and the overall load time of the application.

B. Tree-Shaking and Unused Code

Angular Ivy offers improved tree-shaking capabilities. Tree-

shaking is a process that eliminates unused code from the

final output, reducing the size of the JavaScript bundle. While

the View Engine supported tree-shaking to some extent, it

was not as efficient as Ivy. With Ivy, Angular applications are

able to exclude more unused code, leading to smaller bundle

sizes, faster load times, and improved performance.

C. Rendering and Change Detection

In the View Engine, Angular used a two-phase change

detection process that checked the component state and

updated the view accordingly. This could lead to

performance bottlenecks in larger applications, especially

when there were many components to track and update.

Angular Ivy, on the other hand, uses a more efficient change

detection system that reduces the need for unnecessary

updates and checks. Ivy allows for more fine-grained

updates, meaning that only the parts of the application that

actually change are re-rendered. This leads to faster

rendering times and a more responsive application.

D. Debugging and Tooling

Another significant improvement with Angular Ivy is the

enhanced tooling and debugging capabilities. With Ivy,

Angular developers gain access to more detailed error

messages, better stack traces, and an improved debugging

interface. This makes it easier to pinpoint issues and

optimize the application’s performance. The View Engine,

while functional, did not offer the same level of insight and

control for developers when debugging Angular applications.

4. Key Benefits of Angular Ivy

Angular Ivy introduces several key benefits that have a

direct impact on the development process, user experience,

and overall performance of Angular applications.

A. Improved Performance

One of the most significant advantages of Angular Ivy is its

impact on application performance. By reducing the size of

the bundle and optimizing the rendering process, Ivy allows

for faster load times and improved runtime performance.

Applications that use Ivy can deliver content to users more

quickly, which leads to a better user experience, especially

on mobile devices with slower network connections.

B. Smaller Bundle Sizes

The introduction of incremental compilation and more

efficient tree-shaking in Ivy results in smaller bundle sizes.

This is particularly important for web applications that need

to be optimized for performance, as smaller bundles mean

less data is transferred over the network. With reduced

bundle sizes, users experience faster load times, leading to

improved engagement and lower bounce rates.

C. Enhanced Developer Experience

Angular Ivy introduces several features that make it easier

for developers to work with Angular applications. The

improved debugging and error reporting tools help

developers pinpoint issues more quickly, while the smaller

bundle sizes and more efficient code generation simplify the

development process. These improvements make it easier

for developers to create and maintain Angular applications,

which ultimately leads to faster development cycles and

more efficient workflows.

D. Compatibility with Existing Codebases

One of the major concerns when introducing a new

rendering engine is backward compatibility. Fortunately,

Angular Ivy is fully compatible with existing Angular

applications. This means that developers can migrate their

applications to Ivy without the need for significant changes

to their codebase. This ensures that the transition to Ivy is

smooth and does not require a complete rewrite of existing

applications.

5. Real-World Impact on Web Applications

The impact of Angular Ivy is not just theoretical; it has real-

world implications for developers and businesses alike. By

implementing Ivy, organizations can expect tangible

improvements in application performance, user experience,

and overall efficiency.

A. Speeding Up Page Load Times

One of the most immediate benefits of Angular Ivy is faster

page load times. Applications that use Ivy require less data to

be transferred between the server and the client, resulting in

quicker load times. For users, this translates to a more

responsive application and better overall performance,

especially in regions with slower internet connections.

B. Reducing Bandwidth Usage

Because Angular Ivy produces smaller bundles, applications

built with Ivy consume less bandwidth. This is especially

important for mobile users, who often have limited data

plans. With reduced bundle sizes, users can access

applications without using excessive amounts of mobile data,

which can improve their experience and lower costs for

users in data-restricted environments.

C. Better SEO and User Engagement

Faster rendering times and smaller bundle sizes also

contribute to improved SEO. Google and other search

engines take page load times into account when ranking

websites. Faster websites are more likely to rank higher in

search engine results, leading to greater visibility and higher

user engagement. Additionally, faster websites reduce

bounce rates, as users are more likely to stay on a site that

loads quickly.

6. Migration to Angular Ivy

While the transition to Angular Ivy offers numerous benefits,

developers need to be aware of the migration process and

potential challenges.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25091 | Volume – 3 | Issue – 4 | May-Jun 2019 Page 1902

A. Migration Process

Migrating to Angular Ivy is relatively straightforward,

especially with Angular’s emphasis on backward

compatibility. Developers can start using Ivy in existing

projects with minimal changes. Angular CLI provides tools to

enable Ivy for a project and offers instructions on how to

migrate step-by-step.

B. Potential Challenges

Some developers may encounter challenges when migrating

to Angular Ivy, particularly with third-party libraries that

have not been updated to support Ivy. These libraries may

need to be updated or replaced to ensure compatibility with

the new rendering engine. However, the Angular team has

worked hard to make this transition as seamless as possible,

and most popular libraries have already adopted Ivy

compatibility.

7. Conclusion

Angular Ivy represents a significant leap forward in the

evolution of Angular as a framework for building dynamic,

high-performance web applications. By improving rendering

times, reducing bundle sizes, and enhancing developer

tooling, Ivy provides substantial benefits for both developers

and end-users. Its improved performance, flexibility, and

compatibility with existing applications make it an ideal

choice for developers looking to build faster and more

efficient web applications.

As web development continues to evolve, technologies like

Angular Ivy will play a crucial role in shaping the future of

user experiences on the web. For developers, embracing Ivy

is not just about keeping up with the latest trends, but about

harnessing the power of modern web development

techniques to create better applications for users around the

world.

References:

[1] Kommera, Adisheshu. (2015). FUTURE OF

ENTERPRISE INTEGRATIONS AND IPAAS

(INTEGRATION PLATFORM AS A SERVICE)

ADOPTION. NeuroQuantology. 13. 176-186.

10.48047/nq.2015.13.1.794.

[2] Kommera, A. R. (2015). Future of enterprise

integrations and iPaaS (Integration Platform as a

Service) adoption. Neuroquantology, 13(1), 176-186.

[3] Kommera, Adisheshu. (2013). THE ROLE OF

DISTRIBUTED SYSTEMS IN CLOUD COMPUTING

SCALABILITY, EFFICIENCY, AND RESILIENCE.

NeuroQuantology. 11. 507-516.

[4] Kommera, A. R. (2013). The Role of Distributed

Systems in Cloud Computing: Scalability, Efficiency,

and Resilience. NeuroQuantology, 11(3), 507-516.

[5] Kommera, Adisheshu. (2016). TRANSFORMING

FINANCIAL SERVICES: STRATEGIES AND IMPACTS

OF CLOUD SYSTEMS ADOPTION. NeuroQuantology.

14. 826-832. 10.48047/nq.2016.14.4.971.

[6] Kommera, A. R. (2016). " Transforming Financial

Services: Strategies and Impacts of Cloud Systems

Adoption. NeuroQuantology, 14(4), 826-832.

[7] Bellamkonda, Srikanth. (2019). Securing Data with

Encryption: A Comprehensive Guide. International

Journal of Communication Networks and Security. 11.

248-254.

[8] BELLAMKONDA, S. “Securing Data with Encryption: A

Comprehensive Guide.

[9] Srikanth Bellamkonda. (2018). Understanding

Network Security: Fundamentals, Threats, and Best

Practices. Journal of Computational Analysis and

Applications (JoCAAA), 24(1), 196–199. Retrieved

from

https://www.eudoxuspress.com/index.php/pub/arti

cle/view/1397

[10] Bellamkonda, Srikanth. (2018). Data Security:

Challenges, Best Practices, and Future Directions.

International Journal of Communication Networks

and Information Security. 10. 256-259.

[11] BELLAMKONDA, S. Data Security: Challenges, Best

Practices, and Future Directions.

[12] Srikanth Bellamkonda. (2017). Cybersecurity and

Ransomware: Threats, Impact, and Mitigation

Strategies. Journal of Computational Analysis and

Applications (JoCAAA), 23(8), 1424–1429. Retrieved

from

http://www.eudoxuspress.com/index.php/pub/articl

e/view/1395

[13] BELLAMKONDA, S. (2017). Optimizing Your Network:

A Deep Dive into Switches. NeuroQuantology, 15(1),

129-133.

[14] Bellamkonda, Srikanth. (2017). Optimizing Your

Network: A Deep Dive into Switches.

NeuroQuantology. 15. 129-133.

10.48047/nq.2017.15.1.1019.

[15] BELLAMKONDA, S. (2016). " Network Switches

Demystified: Boosting Performance and Scalability.

NeuroQuantology, 14(1), 193-196.

[16] Bellamkonda, Srikanth. (2016). Network Switches

Demystified: Boosting Performance and Scalability.

NeuroQuantology. 14. 193-196.

10.48047/nq.2016.14.1.869.

[17] Bellamkonda, Srikanth. (2015). MASTERING

NETWORK SWITCHES: ESSENTIAL GUIDE TO

EFFICIENT CONNECTIVITY. NeuroQuantology. 13.

261-268.

[18] BELLAMKONDA, S. (2015). " Mastering Network

Switches: Essential Guide to Efficient Connectivity.

NeuroQuantology, 13(2), 261-268.

[19] Kodali, N. Angular Ivy: Revolutionizing Rendering in

Angular Applications. Turkish Journal of Computer and

Mathematics Education (TURCOMAT) ISSN, 3048,

4855.

[20] Kodali, N. . (2019). Angular Ivy: Revolutionizing

Rendering in Angular Applications. Turkish Journal of

Computer and Mathematics Education (TURCOMAT),

10(2), 2009–2017.

https://doi.org/10.61841/turcomat.v10i2.14925

[21] Nikhil Kodali. (2018). Angular Elements: Bridging

Frameworks with Reusable Web Components.

International Journal of Intelligent Systems and

Applications in Engineering, 6(4), 329 –. Retrieved

from

https://ijisae.org/index.php/IJISAE/article/view/703

1

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25091 | Volume – 3 | Issue – 4 | May-Jun 2019 Page 1903

[22] Kodali, Nikhil. (2017). Augmented Reality Using Swift

for iOS: Revolutionizing Mobile Applications with

ARKit in 2017. NeuroQuantology. 15. 210-216.

10.48047/nq.2017.15.3.1057.

[23] Kodali, N. (2017). Augmented Reality Using Swift for

iOS: Revolutionizing Mobile Applications with ARKit

in 2017. NeuroQuantology, 15(3), 210-216.

[24] Kodali, Nikhil. (2017). Integrating IoT and GPS in

Swift for iOS Applications: Transforming Mobile

Technology. NeuroQuantology. 15. 134-140.

10.48047/nq.2017.15.1.1020.

[25] Kodali, N. (2017). Integrating IoT and GPS in Swift for

iOS Applications: Transforming Mobile Technology.

NeuroQuantology, 15(1), 134-140.

[26] Kodali, N. The Coexistence of Objective-C and Swift in

iOS Development: A Transitional Evolution.

[27] Kodali, Nikhil. (2015). The Coexistence of Objective-C

and Swift in iOS Development: A Transitional

Evolution. NeuroQuantology. 13. 407-413.

10.48047/nq.2015.13.3.870.

[28] Kodali, N. (2014). The Introduction of Swift in iOS

Development: Revolutionizing Apple's Programming

Landscape. NeuroQuantology, 12(4), 471-477.

[29] Kodali, Nikhil. (2014). The Introduction of Swift in iOS

Development: Revolutionizing Apple's Programming

Landscape. NeuroQuantology. 12. 471-477.

10.48047/nq.2014.12.4.774.

[30] Reddy Kommera, H. K. (2019). How Cloud Computing

Revolutionizes Human Capital Management. Turkish

Journal of Computer and Mathematics Education

(TURCOMAT), 10(2), 2018–2031.

https://doi.org/10.61841/turcomat.v10i2.14937

[31] Reddy Kommera, H. K. . (2018). Integrating HCM

Tools: Best Practices and Case Studies. Turkish Journal

of Computer and Mathematics Education (TURCOMAT),

9(2). https://doi.org/10.61841/turcomat.v9i2.14935

[32] Kommera, Harish Kumar Reddy. (2015). THE

EVOLUTION OF HCM TOOLS: ENHANCING EMPLOYEE

ENGAGEMENT AND PRODUCTIVITY.

NeuroQuantology. 13. 187-195.

10.48047/nq.2015.13.1.795.

[33] Kommera, Harish Kumar Reddy. (2014).

INNOVATIONS IN HUMAN CAPITAL MANAGEMENT:

TOOLS FOR TODAY'S WORKPLACES.

NeuroQuantology. 12. 324-332.

[34] Kommera, Harish Kumar Reddy. (2013). STRATEGIC

ADVANTAGES OF IMPLEMENTING EFFECTIVE

HUMAN CAPITAL MANAGEMENT TOOLS.

NeuroQuantology. 11. 179-186.

[35] Kommera, H. K. R. (2013). Strategic Advantages of

Implementing Effective Human Capital Management

Tools. NeuroQuantology, 11(1), 179-186.

[36] Kommera, H. K. R. (2014). Innovations in Human

Capital Management: Tools for Today's Workplaces.

NeuroQuantology, 12(2), 324-332.

[37] Kommera, H. K. R. (2015). The Evolution of HCM

Tools: Enhancing Employee Engagement and

Productivity. Neuroquantology, 13(1), 187-195.

