
www. grnjournal.us

173 Information Horizons: American Journal of Library and Information Science Innovation

Information Horizons: AMERICAN Journal of Library
and Information Science Innovation

Volume 02, Issue 05, 2024 ISSN (E): 2993-2777

Innovative Methods and Resources for Programming Education

Najmiddinova Khilola Yokubjanovna

doctor of Pedagogical Sciences, professor, Namangan State University

Abstract. There are certain unique challenges when teaching programming at the university

beginning level, such as the vast range of student's prior knowledge, fear of programming, issues with

syntax in programming languages, etc., as demonstrated by several earlier studies in our online survey.

Several methods and resources have already been created to help students learn programming ideas

more easily. These include various visual aids, guidance, video lectures, and even brand-new

programming languages. Rather than using ordinary IDEs, our method is centered on the development

of specialized learning interfaces for common programming languages like C++. It should be easier

for professors to assist their students before they accumulate a lot of syntax and logical errors thanks

to this interface, which should also prevent many of the common mistakes that students make when

learning programming.

Keywords: programming, teaching software, teaching approaches

Introduction

This study examines the unique characteristics and challenges associated with teaching programming

to university beginners. It proposes our suggestions for structuring the teaching process. The process

refers to the systematic steps involved in acquiring programming knowledge and abilities. The software

tool supports this process and facilitates students in achieving the required programming knowledge

and skills more easily.

Over the past few years, we have regularly administered a web-based questionnaire to a sample of

students enrolled in the first year of study at the Faculty of Organization and Informatics, namely in

the Programming 1 course. The questions pertained to the student's prior programming experience and

overall knowledge of informatics, as well as any specific challenges they encountered in

comprehending programming. Their responses aided us in identifying their challenges and obstacles

in the learning process, as well as our main concerns in the teaching approach. Firstly, it is evident that

teaching programming is confronted with a wide range of student's prior knowledge, as well as their

diverse attitudes toward programming. The significant challenge in teaching programming lies in its

distinctiveness compared to other disciplines, as the amount of prior knowledge varies significantly.

Moreover, several pupils have apprehension towards programming, perceiving it as an exceedingly

challenging task. Many students initially adopt a "it's easy" mindset, but as the exercises grow more

challenging, they quickly shift to a "it's too difficult for me" perspective. Typically, we draw a parallel

between that scenario and the exercise room when new trainees join. They frequently display great

enthusiasm towards their training but occasionally fail to take warnings regarding their practice

seriously, such as starting with excessively large weights. Consequences, such as pain, bruises, and

even hernia, may occur as students strive to acquire programming abilities, and these consequences

also have corresponding mental implications. There are various methods to address such issues, and

http://www/

www. grnjournal.us

174 Information Horizons: American Journal of Library and Information Science Innovation

we mentioned some of them in our chapter on Related work.

Our technique involves creating a specific learning interface for mainstream programming languages,

such as C++, rather than using ordinary Integrated Development Environments (IDEs). The learning

interface should incorporate measures to discourage students from engaging in poor programming

habits, such as producing code without proper syntax and logical validation, as well as relying solely

on memorization to learn program code. There are additional benefits for teachers and the teaching

process, such as the ability to more easily assist students before they make mistakes and prevent them

from engaging in unacceptable behavior, such as copying programs (programs must be written during

exercises).

There are numerous inquiries concerning the instruction of computer programming, specifically

regarding teaching approaches and the technology employed. While it is ideal for a good programming

course to be independent of the programming language used, it is beneficial to teach the fundamentals

of computer programming about a specific programming language. The selection of a programming

language is of utmost importance, if not essential, for the structuring of a programming course. As

evidenced by reference [34], modern programming languages are increasingly gravitating towards C-

like programming languages. Over 50% of computer code utilized in the United States is composed in

one of the languages closely related to the C programming language, namely C, C++, C#, and Java.

PHP and Visual Basic are the only two other programming languages that are utilized considerably.

PHP accounts for over 10% of the used code, while Visual Basic accounts for 8.5%. There are several

criteria we considered when selecting a programming language:

 Utilization of programming languages. Support for widely used operating system platforms

 Comprehensive coverage of essential programming principles.

The initial parameter in the list unambiguously refers to one of the programming languages that

resemble C. Despite being the most widely used programming language now and having the advantage

of being platform agnostic, Java's suitability as a choice is called into doubt due to the omission of

crucial concepts like pointers. It would not pose a significant challenge for students whose primary

area of study is not computer software design and development to take the programming course.

Programming courses for computer and information science students must cover all essential

programming principles, including pointers and dynamic memory allocation algorithms. The C

programming language is commonly utilized for introductory programming courses, followed by more

complex languages such as C++ or Java. In our perspective, commencing with the C programming

language is deemed unnecessary. Instead, we believe that beginners in computer programming would

find it more advantageous to begin with other C-like languages that offer a greater degree of

programming. Hence, we choose to employ a solitary programming language across all degrees of

programming training. C# is the most recent among the four most widely used programming languages

that are similar to C. The programming language offers comprehensive support for all fundamental

programming ideas, including intriguing concepts that are particularly useful for educational purposes,

such as secure pointers and the option for manual or automatic memory reallocation. The disadvantages

of C# include its relatively low adoption rate (about 4.3%) and limited support for the Linux platform.

Conclusion.

Teaching programming at the beginner's level in university encounters certain special challenges, as

indicated by the questionnaire completed by our students. The absence of a prior. The acquisition of

knowledge, along with difficulties in comprehending program code and sometimes apprehension

towards programming, can often steer pupils in the incorrect direction. Poor programming habits, such

as writing code without proper syntax and logical testing, as well as relying on rote

http://www/

www. grnjournal.us

175 Information Horizons: American Journal of Library and Information Science Innovation

memorization to learn program code, can result in significant issues when tackling more challenging

exercises. These habits often lead students to the conclusion that programming is "too difficult" for

them. Our strategy for addressing this issue involves acquiring proficiency in programming interfaces

for standard compilers. This will discourage students from copying programs from one another and

instead encourage them to incorporate checkpoints throughout the development of their programs.

Additionally, there are other options available to assist students in the analysis and debugging of

software code. Every program created using the learning programming interface is customized by

including the data submitted in a form at the start of the programming session, together with additional

data and an MD5 checksum. This checksum ensures that the program was indeed produced using the

learning programming interface. Using a learning programming interface offers benefits for both

students and the teaching process. Students are encouraged to thoroughly test their programs during

the development phase to prevent any problems from occurring. In addition, the software analysis and

debugging tools assist them in identifying the root cause of their errors. In the educational process, it

is crucial to prevent students from plagiarizing their programs. Furthermore, teachers can assist their

pupils in rectifying their syntax and other faults before they accumulate a significant amount. In our

future development of the programming interface, we aim to incorporate several enhancements. These

include improved explanations of syntax and logical errors, the inclusion of time limitations for exams,

and the addition of program-related questions to assess the student's comprehension.

References:

1. Abernethy, K., Piegari, G., Reichgelt, H., Treu, K.: An Implementation Model for a Learning

Object Repository, Proceedings of World Conference on E-Learning in Corporate, Government,

Healthcare, and Higher Education, Ostober 24-28, Vancouver, Canada, 2005, pp. 2- 7.

2. Najmiddinova, X. Y., & Toxirjonova, X. Y. (2022). Some Examples of Automorphism in A

Limited Group. International Journal on Integrated Education, 5(6), 497-500

3. Begel, A.: LogoBlocks: A Graphical Programming Language for Interacting with the World,

Boston, MA, MIT, 1996.

4. Najmiddinova, K. Y. (2020). DETERMINATION OF THE LEVEL OF MATHEMATICAL

LITERACY USING COMPUTER GAMES. Scientific Bulletin of Namangan State

University, 2(1), 413-419.

5. Brusilovsky, P. L.: Turingal - the language for teaching the principles of programming,

Proceedings of Third European Logo Conference, 27-30 August, Parma, Italy, 1991, pp. 423-

432.

6. Najmiddinova, K. Y. (2021, January). INFLUENCE OF FAMILY ON THE DEVELOPMENT

OF MATHEMATICAL LITERACY OF CHILDREN. In Archive of Conferences (Vol. 13, No.

1, pp. 120-128).

7. Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., Miller, P.: Mini-languages: A

Way to Learn Programming Principles, Education and Information Technologies, Vol. 2, No. 1,

pp. 65-83.

8. Нажмиддинова, Х. (2023). О ПРОБЛЕМАХ ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОГО

ОБУЧЕНИЯ СТУДЕНТОВ В ОБУЧЕНИИ НА ОСНОВЕ КРЕДИТНО-МОДУЛЬНОЙ

СИСТЕМЫ. Namangan davlat universiteti Ilmiy axborotnomasi, (7), 776-782.

9. Viner, N. Kibernetika, ili Upravleniye i svyaz' v zhivotnom i mashine [Tekst] / N. Viner ; per. s

http://www/

www. grnjournal.us

176 Information Horizons: American Journal of Library and Information Science Innovation

angl. I. V. Solov'yeva i G. N. Povarova ; pod red. G. N. Povarova. – 2-ye izdaniye. – M. : Nauka

; Glavnaya redaktsiya izdaniy dlya zarubezhny'h stran, 1983. – 344 s.

10. Duvanov, A. A. Azbuka Robotlandii. Informatsiya [Tekst] / A. A. Duvanov [i dr.] // Informatika,

ID Pervoye sentyabrya. – 2012. – № 7. – S. 36–49, elektronnoye prilozheniye na CD.

11. Yeremin, Ye. A. Sreda Scratch – pervoye znakomstvo. «Informatika» [Tekst] / Ye. A. Yeremin

// IMD 1 sentyabrya. – 2008. – № 18 – S. 17–24, № 20 – S. 16–28.

12. Yershov, A. P. Shkol'naya informatika (kontseptsii, sostoyaniye, perspektivy) [Tekst] / A. P.

Yershov, G. A. Zvenigorodskiy, Yu. A. Pervin. – Preprint VTS SO AN SSSR, №152,

Novosibirsk, 1979. – 26 s.

13. Zvenigorodskiy, G. A. Osnovny'ye operatory' uchebno-proizvodstvennogo yazy'ka Rapira

[Tekst] / G. A. Zvenigorodskiy // Kvant. – 1980. – № 1. – S. 52–55.

http://www/

