

Microservice Based Architecture: The Development

of Rapid Prototyping Supportive Tools for Project

Based Learning

Irwan Alnarus Kautsar

Informatics Department

Universitas Muhammadiyah Sidoarjo

Sidoarjo, Indonesia
irwan@umsida.ac.id

Arik Bagus Setyawan

Informatics Department

Universitas Muhammadiyah Sidoarjo

Sidoarjo, Indonesia

setyawanarik@gmail.com

M. Ruslianor Maika

Sharia Banking Department

Universitas Muhammadiyah Sidoarjo

Sidoarjo, Indonesia
mr.maika@umsida.ac.id

Jagad Yudha Awali

Informatics Departments

Universitas Muhammadiyah Sidoarjo

Sidoarjo, Indonesia

me@jagad.dev

Agoes Nur Budiman

Research Partner

PT. Ijabqobul Muamalah Indonesia

Sidoarjo, Indonesia
mitra@ijabqabul.id

Abstract—This paper presents the migration of rapid

prototyping supportive tools systems from monolith into

microservice architecture that will be used as the

implementation of Project Based Learning. As in early

development, the developed supportive tool was the monolith

architecture and web based platform. As the growth of the

students as users and addition of the rapid prototyping

framework modules that will be used, the monolith

architectures are urged to decompose its’ services into a more

modular way of web services. As a result, the newest version will

take advantage of a number of benefits offered by microservice-

based architecture, including modularity, scalability and

maintainability. The future features that are needed as the

implementation of the learning based systems will be more easy

to integrate as the beneficial of the microservices-based

architectures.

Keywords—microservice, rapid prototyping, supportive tool,

project based learning

I. INTRODUCTION

Numerous web services that are constantly and continually
updated have been created and are being operated as a result
of the development of cloud computing and web technology.
A multi-layered architecture with a monolithic design is
typically used to build several web-based applications or web
services [1], [2]. The internal implementation of these layers
is becoming more challenging, and changing the system can
necessitate extensive rebuilds and redeployments [3], [4]. For
a system that needs to change often and continuously (like
agile software development), there must be a lot of changes
that make development and operation difficult [5]. As a result,
it is required to localize the area of influence on the modified
software module. In light of this, the utility of microservice
architecture is being assessed. This architecture builds a
system by combining software components from several
microservices.

The constructed web application is based on a
conventional monolithic design consisting of three
fundamental tiers: the persistent layer, middleware, and front-
end code. Monolithic design has the disadvantages of not
being scalable and reducing modularity. The app's dashboard
is a website that serves all static files, front-end HTML, CSS,

and JavaScript, acts as the REST API, and serves as the data
persistence tier, authentication, and notification. Any changes
to any of the three tiers will necessitate a significant amount
of team effort to launch a new release—a significant amount
of effort for a little change.

Microservices can be viewed as a technique for designing
software applications that, by inheriting the principles and
concepts of the Service-Oriented Architecture (SOA) style,
allows a service-based application to be structured as a
collection of very small and connected software services.
Microservices architecture can be viewed as a new paradigm
for building applications by composing small services, each
with its own procedures and lightweight techniques for
communication. Microservices are called "micro" not because
of the sum of the lines of code, but because of their specific
roles for the sake of platform reliability.

Several studies [6], [7] have shown similar efforts to
transition monoliths to microservices architecture. Some
research has proposed repackaging the program, refactoring
the code, and then refactoring the data [8], [9]. To create
scalable microservices, the reference [10] advocated multiple
stages, beginning with employing unsupervised machine
learning techniques to examine monolithic application log
files in order to discover candidates for microservices
migrations. Next, the reference [10] will determine which
portions of the application receive more requests (higher
loads) and construct new microservices for these features so
that they may be automatically scaled and routed by a load
balancer. In a case study of transforming a monolith into a
cloud-native application, [11]–[13] recommended multiple
techniques depending on the type of existing monolithic
applications. The reference [14], [15] propose a recovery
strategy to support model-driven engineering for the creation
of microservices, whereas the references [16], [17] propose a
domain-driven design to complete the migration to a
microservices architecture.

This paper is organized as follows: The prior work on
rapid prototyping supportive tools as the lecturer's companion
while implementing project-based learning (PBL) in
monolithic architecture is presented in Section II. In Section
III, the microservice architecture as the proposed method is

explored. Section IV discusses the implementations. Section
V discusses the results and outlines several future research
directions.

II. PROBLEM ANALYSIS

A. Project-based Learning and Prototyping Framework

Project-based Learning (PBL) is one type of learning
model that challenges students to solve real-world issues [18]–
[21]. Key components of the PBL method include presenting
students with the need for some systems or an incomplete
existing digital service, then encouraging them to complete it,
promoting self-discipline and self-regulation by allowing
students to define their working hours, timeline, and outcome,
and encouraging teamwork and interdisciplinary
collaboration.

Learning models such as project-based learning are
output-based learning models, also known as outcome-based
education (OBE). When adapting OBE, informatics students
must create an outcome from ideas into usable applications as
learners [18,19]. For this reason, students need to be
introduced to several prototyping tools. The problem starts
rising: "What are the suitable prototyping frameworks, not
only for freshman year but also for 3rd and 4th year bachelor
students?" These questions are urged to be answered since the
Indonesian Higher Education Ministry implemented a
renowned curriculum called Merdeka Belajar Kampus
Merdeka (MBKM) [22]. The meaning of "Merdeka" can be
translated as "freedom." As an Indonesian citizen, the word
"Merdeka" is meaningful since the word played an important
role in Indonesia's independence. The word "belajar" means
"to learn" or "learning." This is why the main focus in those
MBKM curricula is on students being pushed to have
collaboration not only with their peers in the same department
but also with their seniors and other students from outside
departments (adapting interdisciplinary learning). So, in our
perspective, introducing a framework that can be used not
only by informatics students but also other students from
outside the informatics department seems urgently needed.

B. Supportive Tools and Prototyping Framework

A supportive tool is a platform that is used to support
educators in implementing a learning model [23], [24].
Previously, various prototyping frameworks had been chosen
in order to prototype adaptation in project-based learning
models. Also, we develop supportive tool platforms that adapt
to the chosen framework [25], [26]. The platform created not
only allows students to publish their final project. But it also
helps lecturers monitor, control, and evaluate the learning
process [20] .

However, the supportive platform that started with small
modules eventually became a bigger project [27]. Along with
the adaptation of the new selected prototyping frameworks.
Other problems arise since the chosen prototyping framework
is divided into different levels. For example, the Cause-Effect-
Solution framework and Funtional/Non Functional (F/NF)
adoption are for first- and second-year students, respectively.
And the business model canvas and platform design canvas
are for the 3rd and 4th years, respectively. Because they will
be using the same platform and the same supportive tool,
which is built on a monolithic architecture, the load on the
supportive tool and server response time will quickly become
an issue. Figure 1 depicts the monolithic architecture of the
developed supportive tools.

Fig. 1. Supportive tool with monolith architecture

III. PROPOSED METHOD

A. Microservices Based Architecture (MBSA)

Microservice is an imprecise phrase that is supposed to
refer to an architectural approach that separates a system into
small, lightweight services [28]. This service is purposefully
designed to execute a highly interdependent business
function; it is an extension of the classic service-oriented
architecture [29] and a well-mapped implementation in [28],
[30].

According to [31], several microservices are combined to
create a single application. These microservices run in their
own processes and frequently connect with one another using
a lightweight communication protocol, such as the REST API
(Representational State Transfer Application Programming
Interface) [32]. In addition, these microservices are based on
business capabilities and can be independently delivered by
completely automated procedures [33]. The degree of
centralization for these services is limited, and each service is
able to utilize distinct programming languages and data
storage technologies.

In practice, the idea of the microservice is to examine the
offered functionality [34]. As a result, it is clear that
microservices go beyond the separation of services in a
monolith [29], [31], [35]. As seen in Figure 1, all services are
still tied to a single database. Each service with its own
database should migrate to a microservice-based architecture.
It provided the REST API as the interface in addition to
separating the database to achieve independence. Figure 2
depicts the current development of rapid prototyping
supportive tools' microservice-based architectures.

Fig. 2. Supportive tool microservice architecture

 Figure 1 depicts a monolithic architecture in which
system modules such as authentication, notification, progress
reporting, and log services are centralized at a single database
engine. The same database engine stores the prototyping
frameworks: cause-effect-solution (CES), function-non-
functional (FNF), business model canvas (BMC), and
platform design canvas (PDC). Figure 2 shows the services
are decomposed into separate REST API services along with
a decentralized database engine.

B. Interprocess Communications

 The key to using supportive tools is to enable students to

collaborate on the prototyping process as part of project-

based learning. This means the prototyping microservices

(CES, FNF, BMC, and PDC) and system modules

(authentication, notification, progress report, and log

services) must have the ability to have interservice

communications. In monolithic business logic, microservice

interprocess communication occurs. It needs to be deployed

at intelligent endpoints, also known as business logic layers

(BLL). Direct point-to-point communication is the most

straightforward approach to invoking the service. Each

microservice represents a REST API, and a microservice or

external client can import other microservices using its REST

API, as depicted in Figure 3.

Fig. 3. Interprocess Communication between microservices

 Representational State Transfer (REST), which offers a

straightforward communications style implemented with

HTTP request-response and is based on resource API style,

is the overwhelming choice. Synchronous messaging is a

REST API. While they are required to simulate asynchronous

messaging protocols like ZeroMQ, RabbitMQ, or Matrix for

various microservice scenarios. We implemented

microservice using Flask and Nameko framework for the

microservices.

 As the number of microservices increases, point-to-point

communication will become more difficult. At each and

every microservices level, the non-functional requirement

must be implemented. This may result in redundant common

functionality and a complete lack of control over the

communication between microservices and clients. This form

of direct communication is considered an antipattern for

large-scale microservice implementation [29]. In this case, an

API-Gateway design is used. The concept is to employ a

lightweight message gateway as the primary entry point for

all clients, and to integrate non-functional requirements such

as security, monitoring, and control at the gateway level. The

alternative style may be a message broker style for

asynchronous messaging technologies like RabbitMQ and

ZeroMQ.

 Due to the high density of microservices in microservice

architecture and the possibility of continuous request changes

as part of agile development, the service registry concept will

provide a solution. The locations of the microservice

instances will be stored in the service registry. It indicates that

the service registry registers each microservice instance

during startup and deregisters it upon shutdown. The

introduction of a service discovery is used to locate the

accessible microservices. Next, load balancer will control and

serve the incoming request as part of service discovery

mechanisms. Figure 4 illustrates the role of service registry.

Fig. 4. Service registry

 Because microservices are self-contained services

that are directly connected to the database, a secure

communication interface is required. Furthermore, OAuth2

and OpenID are implemented in the microservices

architecture as API security standards. OAuth2 will

authenticate the client with the authorization server and return

an access token. An access token is an obscure token with no

user or client information. It contains only a reference to the

user's information, which can only be retrieved by the

authorization server, and it will be saved as a "by-reference

token." In addition to the access token, the authorization

server uses an OpenID token that contains information about

the user in the form of a JSON web token (JWT) that is signed

by the authorization server. This will ensure that the

authorization server and mobile client are trustworthy. Figure

5 shows the implementation of OAuth2 and OpenID as part

of the authentication process.

Fig. 5. Rapid prototyping suppotive tool architeture design

To guarantee the management of the system's health, we

adopted self-managing atomic services [36]. The simplified

instantiation and de-instantiation sequence diagram is

depicted in Figure 7. The orchestrator initiates the

deployment of services first. Secondly, the load balancer

(LB) registers the request as a new identification of an

endpoint. Also, the LB monitors the registration Application

Service (AS) and other pertinent events with the information

stored at Oh-My-PickleDB (OMPDB) [37]. OMPDB is an

open-source key-value store using Python's JSON module.

OMPDB updates configuration settings (reconfiguration

parts for Application Service and Cache). The orchestrator

will set the service to "active" as soon as all initial

components have been deployed. The produced component's

monitoring data is continuously saved at the OMPDB.

Periodically, each component checks the status of the service.

If the service is running and the OMPDB cluster leader node

is discovered, auto-scale and health management will begin.

As an alternative, the automatic scaling and the health

management components can be launched based on the load

of the requested microservices. Figure 7 shows the sequence

diagram of the service instantiation and de-instantiation

mechanisms.

Fig. 6. Self-managing sequence diagram microservice-based architecture

IV. RESULT AND DISCUSSION

A. Load Test

In this section, we compare the load tests of the

monolithic and microservice-based architectures. The load of

each architecture has been evaluated using Locust

(http://locust.io). The load test was applied to four

prototyping frameworks (CES, FNF, BMC, and PDC) in both

architectures. The results are shown at Table I, Table II, and

Figure 7.

TABLE I. MONOLITH BASED LOAD TEST RESULTS

No

MS

Code

Req.

Count

Min

Resp.

Time

(ms)

Max

Resp.

Time

(ms)

Avg.

Resp.

Time

(ms)

Avg.

Size

(Byte)

1 CES 4826 8.72 316.15 62.81 96.13

2 FNF 5921 8.24 288.72 49.29 980

3 BMC 4829 6.49 340.23 32.12 63.46

4 PDC 5102 6.45 182.47 26.92 86.17

TABLE II. MICROSERVICE BASED LOAD TEST RESULTS

No

MS

Code

Req.

Count

Min

Resp.

Time

(ms)

Max

Resp.

Time

(ms)

Avg.

Resp.

Time

(ms)

Avg.

Size

(Byte)

1 CES 4983 4.87 207.53 21.12 82.27

2 FNF 5125 4.93 256.06 30.26 1350

3 BMC 5069 4.77 395.41 22.64 81.79

4 PDC 5093 5.05 192.68 21.87 84.07

From Tables 1 and 2, the FNF prototyping framework

chose the comparison of both architectures. That is because

the FNF in both architectures has the highest average content

size (ACS), which is 1350 bytes for microservices and 980

bytes for monoliths at each request. Figure 7 shows that,

when FNF is compared to monolith-based architecture, the

implementation of microservice-based architecture has a

faster response time. The microservices-based architecture

has the lowest average response time (ART), with a value of

30.26 ms. Compared with ART on monolithic bases with

49.29 ms. Furthermore, when looking at overall response

time (ms) results from all prototyping framework load tests

with microservice-based architecture, the ART value has

decreased over time. This means the system health

management implementation was successfully

implemented.

Fig. 7. The load test results of FNF ptrototyping framework

B. User Acceptance Test

We conduct experiments with the following scenarios to

determine the level of acceptance of students as users when

using monolithic and microservice-based supportive tools:

1. Students from the first, second, third, and fourth years

formed a group.Each group has been given two

assignments as a case study. They asked for the first

assignment to analyze problems in the crowdfunding

sector.The second assignment is to investigate health-care

issues.

2. We established guidelines stating that first-year students

should use the CES Framework, second-year students

should use the F/NF Framework, third-year students

should use the BMC Framework, and fourth-year students

should use the PDC Framework.

3. Each group was given one week to complete the two

assignments.Following that, we instruct students to

complete their first assignment on Server A, where we

prepared the supporting tools using a monolithic

architecture. And finish the second assignment on server

B, which already use microservice architecture to deploy

supportive tools.

 We collected questionnaires from 146 participants to

determine whether there is any performance improvement or

experience with the proposed method (microservice-based)

compared to the previously developed monolith-based

architecture. The questionnaire had five Likert scales with the

predicates "Strongly Agree," "Agree," "Neutral," "Disagree,"

and "Very Disagree," with points 5, 4, 3, 2, and 1,

respectively. Also, using Eq. (1) for understanding the

respondents' expressions with the questionnaire items.

 (1)

Where:

P = Each question percentage value

N = The value of each instruments response

R = The frequency of answered value

I = The number of participants multiplied by the highest value

of the answer (146 � 5 = 730)

 Table 3 shows the questionnaire item.

TABLE III. QUESTIONNAIRE ITEMS

No Descriptions

1 Prototyping frameworks help analyze problems.

2 Supportive tools help implement the prototyping framework.

3 Supportive tools help collaboration while prototyping.

4 Both assignments have similar difficulties.

5 Both supportive tools have the same response.

6 Server A appeared to be faster than server B.

7 Server B appeared to be faster than server A.

8 The given instructions are easy to follow.

 Figure 8 shows the Likert percentage from Tabel 3 and

Eq. (1)

Fig. 8. Likert percentage from questionnaires

 From Figure 8, 67% of students express a strong

understanding of the use of prototyping frameworks for

problem analysis. Furthermore, more than 70% of students (a

combination of strongly agree and agree) understand the

benefits of supportive tools and use the prototyping

framework. More than 83% of respondents express

agreement that supportive tools facilitate collaboration while

prototyping. Next, students were asked about their

experiences and if there were any differences between using

server A or B to complete the assignment. It happened that

36% of students felt that there was a difference in response

from both servers. 63% express the opinion that Server B

appeared to be faster than Server A.

V. CONCLUSION AND FUTURE WORK

The monolithic tools were converted to a microservice
architecture. The migrated design includes the OAuth2 and
OpenID API security standards. This reduces the security
threats since the databases are decentralized to their services.
In contrast to monolithic architecture, which stores credential
and transactional data in a single database, microservice
architecture stores transactional and credential data in separate
databases. Furthermore, the platform performance that is
being developed with microservice architecture offers a better
experience for lecturers and students while using supportive
tools for implementing project-based learning. This is because
it already has separate services for each student
level.However, if the platform has already been decomposed
into one prototyping framework and one service, the
implementation of the new framework will not disrupt service.
The use of microservice-based architecture offers flexibility
when adapting new prototyping frameworks. Because when
deploying the new service, there is no need to terminate the
whole prototyping service. It only needs to reactivate the
service registry. Because the platform structure already has an
independent API service, it will make development easier
when the mobile version of the supporting tools is developed
in the near future.

ACKNOWLEDGMENT

The authors thank Kementerian Pendidikan, Kebudayaan,
Riset, and Teknologi for funding this work under contract
number 073/E5/P6.02.00.PT/2022, 019/SP2H/PT-
L/LL7/2022, and 621.06/II.3.AU/14.00/C/PER/VI/2022. The
authors also thank Universitas Muhammadiyah Sidoarjo.

REFERENCES

[1] “Effective Optimization of Web Sites for Mobile Access: The Transition

from eCommerce to mCommerce: Journal of Interactive Advertising:

Vol 9, No 1.”

� �
� � �

�
� 100%

https://www.tandfonline.com/doi/full/10.1080/15252019.2008.107221

49 (accessed Jun. 20, 2021).
[2] S. Baškarada, V. Nguyen, and A. Koronios, “Architecting

Microservices: Practical Opportunities and Challenges,” J. Comput. Inf.

Syst., vol. 60, no. 5, pp. 428–436, Sep. 2020, doi:
10.1080/08874417.2018.1520056.

[3] W. K. G. Assunção, J. Krüger, and W. D. F. Mendonça, “Variability

management meets microservices: six challenges of re-engineering
microservice-based webshops,” in Proceedings of the 24th ACM

Conference on Systems and Software Product Line: Volume A - Volume

A, New York, NY, USA, Oct. 2020, pp. 1–6. doi:
10.1145/3382025.3414942.

[4] T. Killalea, “The Hidden Dividends of Microservices: Microservices

aren’t for every company, and the journey isn’t easy.,” Queue, vol. 14,
no. 3, pp. 25–34, May 2016, doi: 10.1145/2956641.2956643.

[5] F. Li and L. Gelbke, “Microservice architecture in industrial software

delivery on edge devices,” in Proceedings of the 19th International
Conference on Agile Software Development: Companion, New York,

NY, USA, May 2018, pp. 1–4. doi: 10.1145/3234152.3234196.

[6] O. Al-Debagy and P. Martinek, “Extracting Microservices’ Candidates
from Monolithic Applications: Interface Analysis and Evaluation

Metrics Approach,” in 2020 IEEE 15th International Conference of

System of Systems Engineering (SoSE), Jun. 2020, pp. 289–294. doi:
10.1109/SoSE50414.2020.9130466.

[7] S. S. de Toledo, A. Martini, A. Przybyszewska, and D. I. K. Sjøberg,

“Architectural technical debt in microservices: a case study in a large
company,” in Proceedings of the Second International Conference on

Technical Debt, Montreal, Quebec, Canada, May 2019, pp. 78–87. doi:
10.1109/TechDebt.2019.00026.

[8] M. Tusjunt and W. Vatanawood, “Refactoring Orchestrated Web

Services into Microservices Using Decomposition Pattern,” in 2018
IEEE 4th International Conference on Computer and Communications

(ICCC), Dec. 2018, pp. 609–613. doi:

10.1109/CompComm.2018.8781036.
[9] N. Gonçalves, D. Faustino, A. R. Silva, and M. Portela, “Monolith

Modularization Towards Microservices: Refactoring and Performance

Trade-offs,” in 2021 IEEE 18th International Conference on Software
Architecture Companion (ICSA-C), Mar. 2021, pp. 1–8. doi:

10.1109/ICSA-C52384.2021.00015.

[10] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised learning approach
for web application auto-decomposition into microservices,” J. Syst.

Softw., vol. 151, pp. 243–257, May 2019, doi:

10.1016/j.jss.2019.02.031.
[11] S. G. Haugeland, P. H. Nguyen, H. Song, and F. Chauvel, “Migrating

Monoliths to Microservices-based Customizable Multi-tenant Cloud-

native Apps,” in 2021 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), Sep. 2021, pp. 170–

177. doi: 10.1109/SEAA53835.2021.00030.

[12] M. Mishra, S. Kunde, and M. Nambiar, “Cracking the monolith:
challenges in data transitioning to cloud native architectures,” in

Proceedings of the 12th European Conference on Software

Architecture: Companion Proceedings, New York, NY, USA, Sep.
2018, pp. 1–4. doi: 10.1145/3241403.3241440.

[13] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices

Architecture Enables DevOps: Migration to a Cloud-Native
Architecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52, May 2016, doi:

10.1109/MS.2016.64.

[14] L. Wu, J. Tordsson, A. Acker, and O. Kao, “MicroRAS: Automatic
Recovery in the Absence of Historical Failure Data for Microservice

Systems,” in 2020 IEEE/ACM 13th International Conference on Utility

and Cloud Computing (UCC), Dec. 2020, pp. 227–236. doi:
10.1109/UCC48980.2020.00041.

[15] A. Power and G. Kotonya, “A Microservices Architecture for Reactive

and Proactive Fault Tolerance in IoT Systems,” in 2018 IEEE 19th
International Symposium on “A World of Wireless, Mobile and

Multimedia Networks” (WoWMoM), Jun. 2018, pp. 588–599. doi:

10.1109/WoWMoM.2018.8449789.
[16] S. Kapferer and O. Zimmermann, “Domain-Driven Service Design,” in

Service-Oriented Computing, Cham, 2020, pp. 189–208. doi:

10.1007/978-3-030-64846-6_11.
[17] F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of Domain-

Driven Microservice Design: A Model-Driven Perspective,” IEEE

Softw., vol. 35, no. 3, pp. 36–43, May 2018, doi:
10.1109/MS.2018.2141028.

[18] M. Barak and S. Yuan, “A cultural perspective to project-based learning

and the cultivation of innovative thinking,” Think. Ski. Creat., vol. 39,
p. 100766, Mar. 2021, doi: 10.1016/j.tsc.2020.100766.

[19] M. Marques, S. F. Ochoa, M. C. Bastarrica, and F. J. Gutierrez,

“Enhancing the Student Learning Experience in Software Engineering
Project Courses,” IEEE Trans. Educ., vol. 61, no. 1, pp. 63–73, Feb.

2018, doi: 10.1109/TE.2017.2742989.

[20] I. A. Kautsar and R. Sarno, “A Supportive Tool for Project Based
Learning and Laboratory Based Education,” Int. J. Adv. Sci. Eng. Inf.

Technol., vol. 9, no. 2, pp. 630–639, 2019.

[21] M. Genc, “The project-based learning approach in environmental
education,” Int. Res. Geogr. Environ. Educ., vol. 24, no. 2, pp. 105–117,

Apr. 2015, doi: 10.1080/10382046.2014.993169.

[22] “The Impact of Covid-19 to Indonesian Education and Its Relation to
the Philosophy of ‘Merdeka Belajar’ | Studies in Philosophy of Science

and Education,” Apr. 2020, Accessed: Sep. 12, 2021. [Online].

Available: https://scie-journal.com/index.php/SiPoSE/article/view/9
[23] I. A. Kautsar, Y. Musashi, S. Kubota, and K. Sugitani, “Synchronizing

learning material on Moodle and lecture based supportive tool: The

REST based approach,” in 2015 International Conference on
Information Communication Technology and Systems (ICTS), Sep.

2015, pp. 187–192. doi: 10.1109/ICTS.2015.7379896.

[24] I. A. Kautsar, S. Kubota, Y. Musashi, and K. Sugitani, “Lecturer Based
Supportive Tool Development and Approaches for Learning Material

Sharing under Bandwidth Limitation,” J. Inf. Process., vol. 24, no. 2,

pp. 358–369, 2016, doi: 10.2197/ipsjjip.24.358.
[25] I. A. Kautsar and M. R. Maika, “The use of User-centered Design

Canvas for Rapid Prototyping,” J. Phys. Conf. Ser., vol. 1764, no. 1, p.
012175, Feb. 2021, doi: 10.1088/1742-6596/1764/1/012175.

[26] I. A. Kautsar and M. R. Maika, “Platform Design Canvas Adaptation for

Rapid Prototyping and Project-based Learning amid Covid-19
Pandemic,” in 2022 IEEE World Engineering Education Conference

(EDUNINE), Mar. 2022, pp. 1–6. doi:

10.1109/EDUNINE53672.2022.9782390.
[27] I. A. Kautsar and R. Sarno, “The use of Microframework for Portable

and Distributed ePortfolio Development,” in 2019 IEEE International

Conference on Engineering, Technology and Education (TALE), Dec.
2019, pp. 1–6. doi: 10.1109/TALE48000.2019.9225965.

[28] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with

microservices: A systematic mapping study,” J. Syst. Softw., vol. 150,
pp. 77–97, Apr. 2019, doi: 10.1016/j.jss.2019.01.001.

[29] A. Kwan, H.-A. Jacobsen, A. Chan, and S. Samoojh, “Microservices in

the modern software world,” in Proceedings of the 26th Annual
International Conference on Computer Science and Software

Engineering, USA, Oct. 2016, pp. 297–299.

[30] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping Study in
Microservice Architecture,” in 2016 IEEE 9th International Conference

on Service-Oriented Computing and Applications (SOCA), Nov. 2016,

pp. 44–51. doi: 10.1109/SOCA.2016.15.
[31] N. Dragoni et al., “Microservices: Yesterday, Today, and Tomorrow,”

in Present and Ulterior Software Engineering, M. Mazzara and B.

Meyer, Eds. Cham: Springer International Publishing, 2017, pp. 195–
216. doi: 10.1007/978-3-319-67425-4_12.

[32] R. T. Fielding et al., “Reflections on the REST architectural style and

‘principled design of the modern web architecture’ (impact paper
award),” in Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, New York, NY, USA, Aug. 2017, pp. 4–14.

doi: 10.1145/3106237.3121282.
[33] E. Djogic, S. Ribic, and D. Donko, “Monolithic to microservices

redesign of event driven integration platform,” in 2018 41st

International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), May 2018, pp.

1411–1414. doi: 10.23919/MIPRO.2018.8400254.

[34] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl, “Developing Self-
Adaptive Microservice Systems: Challenges and Directions,” IEEE

Softw., vol. 38, no. 2, pp. 70–79, Mar. 2021, doi:

10.1109/MS.2019.2955937.
[35] Q. Xiang et al., “No Free Lunch: Microservice Practices Reconsidered

in Industry.” arXiv, Jun. 14, 2021. doi: 10.48550/arXiv.2106.07321.

[36] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds,
“An architecture for self-managing microservices,” in Proceedings of

the 1st International Workshop on Automated Incident Management in

Cloud, New York, NY, USA, Apr. 2015, pp. 19–24. doi:
10.1145/2747470.2747474.

[37] “Oh-My-PickleDB - JSON Database.” https://tory1103.github.io/oh-

my-pickledb/ (accessed Aug. 19, 2022).

