sktp-14-05-2023 12_16_38-212476 (1).pdf

by A`rasy Fahruddin

Submission date: 24-May-2023 09:23AM (UTC+0700)

Submission ID: 2100500331

File name: sktp-14-05-2023 12_16_38-212476 (1).pdf (314.35K)

Word count: 3532

Character count: 18968

Design of Hydraulic Puller for Releasing Crankshaft Bearings on Motorcycle

Rancang Bangun Tracker Hidrolik Pelepas Bearing Kruk As Pada Sepeda Motor

Junggie Guko Armfirst, A'rasy Fahruddin

Teknik Mesin, Universitas Muhammadiyah Sidoarjo, Jl. Raya Gelam 250 Candi, Sidoarjo, Indonesia, Indonesia. Tel.: (031) 8921938, Fax: (031) 894 9333

Abstract. The bearing puller on the market today still has a way of working using a gripper with a screw working system. The time required is relatively longer and can allow damage to the crankshaft during the bearing release process as well as reduced work performance of the crankshaft. This study aims to design a tool that works with a hydraulic system to release crankshaft motorbike bearings. This tool makes it easy for everyone to do the job of removing bearings. The outer bearing hydraulic tracker or puller uses the working principle of the lever that is pumped with calculated pressure and load and the fluid pressure on the tracker can be known ie at 1X the tracker pump requires 41 kg/cm2 fluid pressure, 2X fluid pressure tracker pump 45 kg/cm2 and 3X pump tracker requires 72 kg / cm2 fluid pressure. As well as the time needed to remove the crankshaft bearing motor especially on the Motor A and Motor B. To release the crankshaft bearing Motor A takes 19.78 s and removing the crankshaft bearing the Motor B takes 31.95 s.

Keywords- Bearing; Crankshaft; Motorcycle.; Hydraulic puller

How to cite: Armfirst Junggie Guko, Fahruddin A'rasy (2019) Design of Hydraulic Puller for Releasing Crankshaft Bearings on Motorcycle. R.E.M. (Rekayasa Energi Manufaktur) Jurnal 4 (2). doi: https://doi.org/10.21070/rem.v4i2.809

PENDAHULUAN

Di Indonesia sarana transportasi adalah sarana yang sangat penting dalam menunjang kegiatan prekonomian masyarakat dan perkembangan wilayah diseluruh daerah perdesaan maupun daerah yang lainnya. Sistem transportasi yang paling mudah dan banyak digunakan di wilayah perdesaan maupun perkotaan yakni sepeda motor [1] . Salah satu komponen kendaraan yang tidak boleh luput dari perhatian pemilik adalah bearing yang melekat pada kruk as terutama sepeda motor. Jika terjadi keausan pada bearing kruk as akibat kinerja lengan piston yang terus menerus pada saat kekurangan pelumasan mesin dan jika diabaikan bearing tidak befungsi secara maksimal yang berujung performa kerja ayunan piston yang seharusnya menghasilkan energi setelah proses pembakaran akan berkurang karena gaya gesek yang terhambat. fungsi bearing kruk as adalah menjaga agar poros lengan piston terhadap as gigi transmisi tidak langsung bergesekan dengan block mesin pada putaran penuh sehingga putaran lengan piston terjaga stabil pada kendaraan bermotor. Kenyamanan pengendara dan penumpang sepeda motor akan begitu dipengaruhi oleh kondisi bearing pada sepeda motor. Jika bearing aus akan mengurangi kecepatan motor diakibatkan karena terjadinya gesekan bearing. Febri (2018) melakukan perancangan alat untuk melepas bearing yang terpasang pada

tromol sepeda motor [2] . Penggunaan alat ini ditujukan untuk memudahkan para mekanik memisahkan melepas bearing pada tromol menggunakan tracker. Penelitian ini menyimpulkan bahwa Pelepasan tromol motor sport kawasaki klx menggunakan tracker sistem pukul dengan pencekam kerapatan tinggi yaitu 10 kali pukulan dengan kedalaman bearing pada tromol 8,4 mm. jika pada tromol motor sport kawasaki klx dengan variasi pencekam kerapatan sedang membutuhkan 5 kali pukulan dengan kedalaman 8,4 mm dan penggunaan tracker menggunakan variasi pencekam kerapatan rendah membutuhkan 11 kali putaran dengan kedalaman bearing 8,4 mm.

Adapun penelitian tentang perancangan alat dengan sistem press hidrolis telah banyak dilakukan oleh beberapa peneliti [3] . Jefris (2010) melakukan penelitian tentang perancangan dan analisa press hidrolik untuk briket sekam padi. Penelitian ini menyimpulkan tentang perhitungan beberapa besar gaya untuk dapat mengepres sekam padi secara optimal dan langkah pembuatan alat tersebut [4]. Ilyas (2012) meneliti tentang rancang bangun dongkrak elektrik [5] . Penelitian ini menyimpulkan tentang mencari besar gaya tekan pada hidrolik 200 kg, besar gaya tuas yang terjadi 75 kg, perhitungan estimasi biaya, harga dongkrak yang didapat adalah Rp. 975.000 rupiah. Berdasarkan data observasi terdapat beberapa kelemahan untuk melepas bearing menggunakan tracker ulir yaitu memerlukan tenaga ekstra dan waktu yang lama terutama saat bearing dan akan bertambah rusak jika tidak hati hati apabila menggunakan alat bantu sembarangan. Maka dari itu perlu adanya pengembangan alat tracker untuk melepas bearing pada kruk as sepeda motor agar menjadi lebih mudah dan efisien. Dengan melihat kelemahan diatas maka penelitian ini mengambil bertujuan untuk membuat rancang bangun tracker system hidrolik pelepas outer bearing kruk as pada sepeda motor dengan harapan dari penelitian ini dapat bermanfaat bagi mekanik untuk melakukan perawatan terhadap mesin.

METODE

Pada penelitian ini membahas tentang merancang dan membangun sebuah kunci, yang disebut kunci tracker sistem hidrolik pelepas bearing pada kruk as sepeda motor. Tracker adalah kunci khusus untuk mengendurkan atau mengencangkan momen dari sejumlah komponen kendaraan yang tidak dapat dijangkau dengan kunci sembarangan. Fungsi alat bantu ini untuk melepas bearing dengan sistem hidrolik untuk input tekanannya. Jika menggunakan sistem hidrolik akan mempercepat proses pelepasan bearing yang semula lama jika menggunakan sistem ulir. Alat ini banyak digunakan pada banyak kegiatan perbengkelan.

Proses pembuatan desain sangat mempengaruhi perancangan terutama desain yang sudah dikembangkan oleh para desainer (designer). Perancangan adalah sebuah proses sehingga seseorang tidak dapat langsung mengharapkan suatu rancangan sebelumberbagai tahapan proses perancangan dilakukan. Proses desain pada umumnya memperhitungkan aspek fungsi, estetik dan berbagai macam aspek lainnya, yang biasanya datanya didapatkan dari riset, pemikiran, brainstorming, maupun dari desain yang sudah ada sebelumnya. Akhir-akhir ini, proses (secara umum) juga dianggap sebagai produk dari desain, sehiziga muncul istilah perancangan proses [6].

Pada proses perancangan juga membahas tentang seperti mesin perkakas (benches), termasuk juga perangkat lunak atau software seperti misalnya pada software desain Autodesk Inventor yang membantu kita memudahkan dalam pengerjaan desain produk untuk manufaktur perancangan produksi. Pada tahap perancangan akan timbul kesalahan-kesalahan yang di buat oleh para desainer, disebabkan karna munculnya standart-standart baru serta metode baru yang belum diketahui oleh desainer tersebut. Adapun prinsip dasar pembuatan desain sebagai berikut:

- Mengurangi jumlah total bagian dari produk merupaka cara terbaik untuk memangkas biaya produksi.
- Penggunaan tipe komponen standart pasaran. Tentunya agar dapat memangkas pembelian komponen yang lebih murah dan terjangkau tanpa mengurangi sifat dan kekuatan bahan.
- Mengembangkan desain modular. Yaitu menyederhanakan berbagai proses seperti kegiatan inspeksi,

- penngujian, perakitan, pembelian, redesign, pelayanan dan sebagainya.
- Desain komponen yang multiguna. Dalam suatu perusahaan manufaktur, sualtu alat dirancang untuk berbagai proses dan fungsi yang berbeda. Untuk maslah ini diperlukan identifikasi masalah yang terperinci pada produk yang multiguna.
- Desain komponen yang multi fungsional. Desain yang fungsional berupa desain yang simple, akan tetapi produk dapat digunakan untuk berbagai fungsi yang ada.

Rancang bangun *trackerhidrolik* pelepas *bearing* pada kruk as sepeda motor (*outer bearing*) akan dijelaskan pada diagram alir sebagai berikut:

Diagram Alir Penelitian

Rancang bangun *trackerhidrolik* pelepas *bearing* pada kruk as sepeda motor *(outer bearing)* akan dijelaskan pada diagram alir sebagai berikut:

Pemilihan Konsep Desain

Pada perencanaan perancangan alat bantu *tracker hidrolik* pelepas *bearing* pada kruk as sepeda motor harus menentukan konsep desain alat menjadi dasar pemikiran dalam prosesnya. Hal – hal yang dilakukan dalam pemilihan konsep adalah sebagai berikut:

- 1. Menentukan Desain
- 2. Pemilihan Komponen
- 3. Perhitungan Dimensi Komponen

HASIL DAN PEMBAHASAN

Pengembangan dan Pemilihan Konsep Tracker

Dalam pengembangan dan pemilihan konsep tracker outer bearing sistem hidrolik pelepas bearing dibutuhkan inovasi dan kreativitas yang dapat menghasilkan produk yang baik dalam fungsinya, kuwalitas maupun performanya. tracker pelepas bearing diharapkan dapat membantu dalam proses service kruk as yang pada umumnya harus melepas bearing agar proses balance terhadap kruk as sempurna dan tidak dapat merusak bearing sehingga performa pada kruk as terjaga. Tracker hidrolik pelepas bearing dapat membantuk meringankan mekanik saat proses maintenance

Pembuatan Desain

Pada penelitian ini menggunakan software autodesk Inventor student untuk proses desain *tracker* meliputi rangka *trackerhidrolik* seperti badan hidrolik 1, badan hidrolik 2, katup, as kecil, as besar, tabung oli, tuas pemompa dan pencekam pengait bearing yang digunakan melepas bearing kruk as.

Sebuah desain ada sebuah part dan assembly serta gambar teknik agar peneliti mudah memahami yang kemudian diproses ke tahap manufaktur oleh karena itu pada penelitian ini dicantumkan pembuatan desain sebagai berikut:

Figure 1. Diagram AlirPenelitian

Part Tracker

Pembuatan desain part pada *tracker* sistem hidrolik pelepas bearing kruk as. Menggunakan autodesk Inventor student dengan satuan millimeter. Desain yang mudah, simple dalam pembuatan. Penggabungan yang optimal pada proses perakitan untuk meminimalkan biaya produksi secara keseluruhan dan Pembagian letak komponen harus dilakukan secara strategis agar letak produk yang akan di tempatkan tidak sulit untuk di jangkau pemakaianya. Desain komponen yang multi fungsional. Desain yang fungsional berupa desain yang simple, akan tetapi produk dapat digunakan untuk berbagai fungsi yang ada. Setiap part memiliki fungsi masing – masing adapun bagian part yang dibuat agar mudah untuk di proses peng-

gabungan Seperti terlihat pada Tabel 1 dibawah ini:

· Assembly Part Tracker

Proses Assembly atau penggabungan sebuah part menggunakan autodesk Inventor student. Pada tahap ini semua komponen part pada tracker seperti tabung hidrolik, hidrolik silinder tube, valve, as hidrolik, tabung oli, tuas pemompa dan pencekam pengait bearing yang digunakan melepas bearing kruk as. hidrolik silinderakan di assembly seperti pada Gambar 3

Uji Analisa Tekanan

Pada penelitian ini pengujian tekanan dilakukan berdasarkan hukum pascal . dengan 3 percobaan. Dibutuhkan alat-alat untuk mengukur gaya yaitu:

Copyright © 2019 Author [s]. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Figure 2. Desain Tracker Hidrolik Pelepas bearing kruk as (outer bearing).

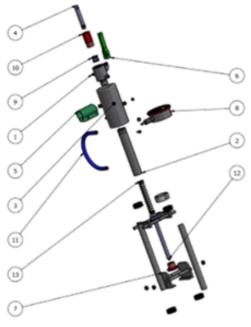


Figure 3. Part Assembly Tracker

2. Badan hidrolik 2

3. Tabung oli

4. As kecil

5. Tuas pemompa

6. Tuas pengait

7. Pencekam bearing

8. Pressure gauge

9. Katup

10. Silinder

11. Selang

12. As besar

13. Spring

Figure 4. Hasil Manufaktur

1. Timbangan gantung digital, berfungsi untuk menghitung gaya tarik F1

2. Timbangan berat badan, berfungsi sebagai pengukur gaya tekan yang dihasilkan as hidrolik F2

3. Pencekam tracker agar tidak geser pada saat pengujian tekanan

Langkah percobaan mengambil hasil gaya yang di tarik oleh timbangan gantung digital dan hasil penekanan pada as hidrolik dengan membaca timbangan berat badan untuk menentukan gaya tekan. Berikut hasil dari pengambilan data yang diperoleh dari analisa tekanan tehadap *tracker*. *Lihat Tabel 2*

Perhitungan untuk mengetahui tekanan fluida pada 1X pompa : Jadi pada 1X pompa tracker membutuhkan tekanan fluida $41~{\rm kg/cm}^2$

$$F_1 = \frac{30}{2} \times Gaya \ Tarik$$

$$= 15 \times 2.85$$

$$= 42.75 \ kg$$

$$D \ tuas \ kecil = 11 \ mm$$

$$P = \frac{F}{A}$$

$$= \frac{Gaya \ tarik \ timbangan}{Luas \ Penampang}$$

$$= \frac{F}{\pi \times r^2}$$

$$= \frac{42.75}{3.14 \times 5, 5^2}$$

$$= 0,45 \frac{kg}{mm^2}$$

$$= 45 \frac{kg}{cm^2}$$
(2)

Jadi 2X pompa pada tracker membutuhkan tekanan fluida $45\ \mathrm{kg/cm^2}$

Perhitungan untuk mengetahui tekanan fluida pada 3X pompa

Permungan untuk mengetar pompa
$$F_1 = \frac{30}{2} \times Gaya \ tarik$$
 = 15 × 4.56
$$= 68.4 \ \frac{kg}{cm^2}$$
 D tuas kecil = 11 mm
$$P = \frac{F}{A}$$
 =
$$\frac{Gaya \ tarik \ timbangan}{Luas \ Penampang}$$
 =
$$\frac{F}{mxr^2}$$
 =
$$\frac{68.4}{3.14 \times 5.5^2}$$
 = 0.720
$$\frac{kg}{mm^2}$$
 = 72
$$\frac{kg}{sg^2}$$

Table 1. Gaya F₁ dan F₂ pada 1 kali pompa

No	Gaya F1 dan F2 (Kg cm2)	Pompa 1X Percobaan 1	Percobaan 2	Percobaan 3	Rata2
1	Gaya Tarik Timbangan (F1)	2,38	2,53	2,89	2,6
2	Gaya Tekan Timbangan (F2)	43	48	47	46

Table 2. Gaya F₁ dan F₂ pada 2 kali pompa

No	Gaya F1 dan F2 (Kg cm2)	Pompa 2X			
1	(Kg cm2) Gaya Tarik Timbangan	Percobaan 1 2.71	Percobaan 2 2.96	Percobaan 3 3.56	2.85
•	(F1)	2,71	2,70	5,50	2,00
2	Gaya Tekan Timbangan (F2)	92	101	117	103

Table 3. Gaya F₁ dan F₂ pada 3 kali pompa

No	Gaya F1 dan F2 (Kg cm2)	Pompa 3X Percobaan 1	Percobaan 2	Percobaan 3	Rata2
1	Gaya Tarik Timbangan (F1)	4,55	4,87	4,27	4,56
2	Gaya Tekan Timbangan (F2)	130	135	174	146,3

Jadi pada 3X pompa tracker membutuhkan tekanan fluida 72 kg/cm2

Pada Gambar 5 Menunjukan bahwa semakin banyak pemompaan pada tracker hidrolik mempengaruhi jumlah tekanan yang dihasilkan nilai tertinggi pada 3 kali pemompaan F1 (4,6 kg), F2 (146,3 kg) dan tekanan fluida 72 kg/cm², nilai terendah terdapat pada 1 kali pemompaan F1 (2,6 kg), F2 (46 kg), tekanan fluida 41 kg/cm².

Perhitungan mengetahui volume oli yang dibutuhkan Dimana S = Panjang Langkah

- =30 mm
- = 3 cm
- $d_{piston\ kecil} = 11 \text{ mm}$
- = 1.1 cm

$$\begin{array}{c} = \frac{1}{4} \times 3.14 \times 1.1^2 \\ = 0.785 \times 1.21 \\ = 0.95 \ cm^2 \\ A(luas \ penampang) = \frac{1}{4} \times \pi \times d^2 \\ = \frac{1}{4} \times 3.14 \times 1.1^2 \\ = 0.785 \times 1.21 \end{array}$$

 $A(luas\ penampang) = \frac{1}{4} \times \pi \times d^2$

 $= 0.95 cm^2$

$$V = A \times S$$

$$= 0.95 \times 3$$

$$= 2.85 cm^3$$

 $= 0.00285 \ liter$

Jadi volume oli yang dibutuhkan tracker untuk 1X pompa yaitu 0,00285 liter

Uji Efisiensi Waktu

Pengujian waktu diaplikasikan untuk proses pelepasan bearing pada kruk as sepeda motor dan akan dibandingkan proses pelepasan menggunakan tracker hidrolik dengan proses pelepasan dengan cara manual. Motor A adalah sampel motor model matic sedangkan Motor B adalah sampel motor model sport.

Proses pelepasan bearing kruk as sepeda Motor A membutuhkan waktu 12,19 s untuk bearing kiri dan 7,59 s untuk bearing kanan. Jadi total waktu yang dibutuhkan untuk melepas bearing kruk as Motor A yaitu 19,78 s.

Proses pelepasan bearing kruk as sepeda Motor B membutuhkan waktu 15,28 s untuk bearing kiri dan 16,67 s untuk bearing kanan. Jadi total waktu yang dibutuhkan untuk melepas bearing yaitu 31,95 s

Proses pelepasan bearing kruk as sepeda Motor A dengan cara manual membutuhkan waktu 95 s untuk bearing kiri dan 164,5 s untuk bearing kanan. Jadi total waktu yang dibutuhkan untuk melepas bearing kru as yaitu: 259

 $Volume\ Oli\ =\ luas\ penampang\ imes\ panjang\ langka$ Proses pelepasan bearing kruk as sepeda Motor B dengan cara manual membutuhkan waktu 148 s untuk bearing kiri dan 153 s untuk bearing kanan. Jadi total waktu yang dibutuhkan untuk melepas bearing yaitu: 301 s.

Pada Gambar 7 Menunjukan bahwa waktu pelepasan

Figure 5. Grafik Hasil uji tekanan pada tracker hidrolik

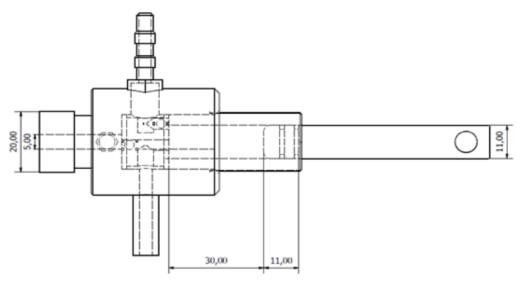


Figure 6. Skema laluan oli

Table 4. Pelepasan Bearing Kruk As dengan Tracker Hidrolik Sepeda Motor A

No	Bearing	Diameter (mm)	Waktu (s)	Rata - rata
1	Bearing Kiri	52	11,79 12,36 12,42	12,19
2	Bearing Kanan	52	6,98 8,40 7,39	7,59

Table 5. Pelepasan Bearing Kruk As dengan Tracker Hidrolik Sepeda Motor B

No	Bearing	Diameter	Waktu	Rata – rata
		(mm)	(s)	
	Dannina		14,12	
1	Bearing Kiri	72	15,98	15,28
	11111		15,76	
	Danina		16,64	
2	Bearing Kanan	72	15,47	16,67
	ranian		17,92	

Table 6. Pelepasan Bearing Kruk As Motor A dengan Cara Manual

No	Bearing	Diameter	Waktu	Rata – rata
		(mm)	(s)	
	Description		80	
1	Bearing Kiri	52	98	95
	KIII		107	
			96	
2	Bearing Kanan	52	114	164,5
	ixanan		119	

Table 7. Pelepasan bearing kruk as sepeda Motor B dengan cara manual

No	Bearing	Diameter (mm)	Waktu (s)	Rata - rata
	ъ :		148	
1	Bearing Kiri	72	157	148
	KIII		138	
	ъ :		165	
2	Bearing Kanan	72	149	153
	Kanan		146	

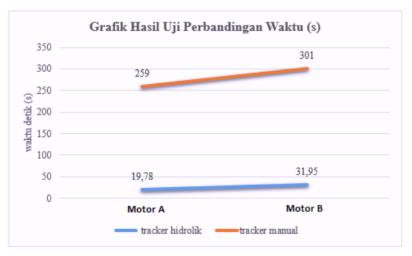


Figure 7. Grafik perbandingan uji waktu pada bearing kruk as sepeda Motor A dan Motor B.

bearing kruk as menggunakan tracker hidrolik memiliki waktu yang lebih efisien yaitu, pada pelepasan bearing kruk as Motor A memerluhkan waktu 19,78 detik dan pada pelepasan bearing kruk as Motor B 31,95. Sedangkan penggunaan tracker manual pada Motor A 259 detik dan pada Motor B sebesar 301 detik.

KESIMPULAN

Dari hasil keseluruhan proses rancang bangun *tracker hidrolik* pelepas bearing kruk as (outer bearing), maka dapat diperoleh kesimpulan sebagai berikut:

- Berdasarkan tahap awal di mulai dari tahap Observasi, pembuatan desain desain, hingga pembuatan tracker hidrolik outer bearing dengan spesifikasi: menggunakan rangka tracker dari baja st dan pencekam tracker bearing dari bahan stainless steel dengan keseluran dimensi ukuran lebar 128 mm dan panjang 454 mm dengan tebal 57 mm.
- Tekanan fluida yang dihasilkan tracker hidrolik pelepas bearing yaitu pada 1X pompa tracker membutuhkan tekanan fluida 41 kg/cm2, 2X pompa tracker tekanan fluida 45 kg/cm2 dan 3X pompa tracker membutuhan tekanan fluida 72 kg/cm2.
- Waktu yang dibutuhkan untuk melepas bearing kruk as motor khususnya pada Motor A dan Motor B. Untuk melepas bearing kruk as Motor A membutuhkan waktu 19,78 s dan melepas bearing kruk as Motor B membutuhkan waktu 31,95 s.

REFERENCES

- [1] A. Fajariansyah, A. Fahruddin, and A. Bukhori, "Pengaruh Vaporasi Bahan Bakar Pertamax Terhadap Performa Sepeda Motor Dibandingkan dengan Pemanasan Biasa," *Rekayasa Energi Manufaktur*, vol. 1, no. 2, pp. 1–6, 2017. [Online]. Available: 10.21070/r.e.m.v1i2.550;https: //dx.doi.org/10.21070/r.e.m.v1i2.550
- [2] F. Kurniawan, "Rancang Bangun Tracker Bearing Pada Tromol Roda Motor (Inner Bearing)," Sidoarjo, 2018.
- [3] U. Ridhani, A. Aminuddin, R. Susanto, and A. A. Jabbar, "Rancang Bangun Alat Mounting Dan Dismounting Bearing Dengan Menggunakan Hydraulic Jack," *JTT (Jurnal Teknologi Terpadu)*, vol. 4, no. 2, pp. 84–90, 2016. [Online]. Available: 10.32487/jtt.v4i2.176;https://dx.doi.org/10.32487/jtt.v4i2.176
- [4] J. E. Kumiawan, "Perancangan Dan Analisa Press Hidrolik Untuk Briket Sekam Padi," Sidoarjo, 2010.
- [5] I. Renreng, "Rancang Bangun Dongkrak Elektrik Kapasitas 1 Ton," *Mekanika*, vol. 3, no. 1, 2012.
- [6] Batan and M. Londen, Desain Produk, and others, Ed. Surabaya: Penerbit Guna Widya, 2012.

Conflict of Interest Statement:

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Article History:

Received: 15 August 2019 | Accepted: 15 November 2019 | Published: 30 December 2019

sktp-14-05-2023 12_16_38-212476 (1).pdf

ORIGINALITY REPORT

5% SIMILARITY INDEX

3%

INTERNET SOURCES

5%

PUBLICATIONS

3%

STUDENT PAPERS

PRIMARY SOURCES

repositori.upf.edu

Internet Source

3%

2

Muhammad Rosyidi, Arasy Fahruddin. "Design And Construction Of Cabinet Dryer With Variation Of Blower Speed Using Charcoal Combustion On Chilli Plants", Procedia of Engineering and Life Science, 2023

2%

Publication

Exclude quotes

Exclude bibliography

On

Exclude matches

< 2%