https://cejsr.academicjournal.io

Prevalence of Ecto-and Endoparasites in Animals

Pulatov F. S, Ph.D

C.V.S, Senior Researcher, Scientific Research Institute of Veterinary Medicine

Rakhimov M. Yu, Ph.D C.V.S, Junior Researcher, Scientific Research Institute of Veterinary Medicine

Ismoilov A. Sh

Junior Researcher, Scientific Research Institute of Veterinary Medicine

Boltayev D. M

Doctoral student, Scientific Research Institute of Veterinary Medicine

Djalolov A. A

Doctoral student, Scientific Research Institute of Veterinary Medicine

ANNOTATION

The article presents information on the spreading of common pest ecto- and endoparasites among farm and laboratory animals, as well as in the areas of livestock farms.

KEYWORDS: Anthropogenic, nymph, ixod, imago, ectoparasite, endoparasite, zoophile, synbovil, parasite, mite.

Introduction. In recent years, as a result of the increasing pressure of anthropogenic factors and anomalous and technogenic phenomena on nature, serious bioecological shifts and successions have occurred, resulting in increased migration of harmful and beneficial species in biocenoses, biodiversity destruction, the emergence of atypical, persistent, mutant, resistant biopathogens, new parasitic systems, exogenous populations, and a new faunistic state. There have been cases of particularly dangerous transmissible or natural foci of disease that have previously been reduced or eliminated. Therefore, it is important to study the spread of harmful ecto- and endoparasites among agricultural and laboratory animals, as well as the creation of new harmless methods and biochemical means to combat them.

Purpose of the study. It consists in studying the distribution of ecto- and endoparasites that live as parasites in the organisms of agricultural and laboratory animals.

Material and research methodology. These bioecological, phenological, entomological, acarological, morphological, parasitological, migratory, sanitary, toxico-hygienic, therapeutic, preventive, economic, and other studies are accepted in modern biomethodology and veterinary medical science.

Research results. A total of 3036 head of cattle, 32477 head of sheep, 2959 head of sheep belonging to livestock farms in different regions, namely Toyloq, Payariq, Nurabad districts of Samarkand region, Kitob district of Kashkadarya region, Nurota district of Navoi region, Altinkol district of Andijan region, Nukus district of the Republic of Karakalpakstan, head goat, 42 heads of white mice, 68 heads of rabbits, 2 heads of dogs, and other animals available in the laboratories of the Veterinary Research Institute, were studied, their morphology, species, sex, and systematics were determined, species,

https://cejsr.academicjournal.io

Species of ecto- and endoparasites recorded among animals

Table 1

Types of animals	Types of ecto and endoparasites found	Names of diagnosed parasitic diseases			
In cattle:	Hyalomma anatolicum	Hyalommosis	Acarozis		
	Hyalomma plumbeum	Hyalommosis	Acarozis		
	Hyalomma detritum	Hyalommosis	Acarozis		
	Rhipicephalus sanguineus	Ripicephalosis	Acarozis		
	Rhipicephalus bursa	Ripicephalosis	Acarozis		
	Rhipicephalus turanicus	Ripicephalosis	Acarozis		
	Alveonasus lahorensis	Alveonasosis	Acarozis		
	Dermacentor marginatus	Dermacentorosis	Acarozis		
	Dermacentor spp.	Dermacentorosis	Acarozis		
	Dermacentor dagestanicus	Dermacentorosis	Acarozis		
	Bophilus calcaratus	Boophilia	Acarozis		
	Haematopinus eurysternus	Hematopinosis	Entomosis		
	Linognathus vituli	Linognatosis	Entomosis		
	Psoroptes bovis	Psoroptosis	Entomosis		
	Bovicola bovis	Bovicolez	Entomosis		
	Hypoderma bovis	Hypodermatosis	Entomosis		
In Sheep:	Bovicola ovis	Bovicolez	Entomosis		
	Psoroptes ovis	Psoroptosis	Acarozis		
	Sarcoptes ovis	Sarcoptosis	Acarozis		
	Rhipicephalus bursa	Ripicephalosis	Acarozis		
	Oestrus ovis	Estrosis	Entomosis		
	Ctenocephalides ovis	Ctenocephalidosis	Entomosis		
In Goats:	Rhipicephalus bursa	Ripicephalosis	Acarozis		
	Bovicola caprae	Bovicolez	Entomosis		
	Ctenocephalides caprae	Ctenocephalidosis	Entomosis		
	Linognathidae caprae	Linognatosis	Entomosis		
In Donkeys:	Bovicola eqvi	Bovicolez	Entomosis		
In Poultry:	Menacanthus stramenius	Menacanthosis	Entomosis		
	Argas persicus	Argazidosis	Entomosis		
	Goniocotes hologaster	Goniocotosis	Entomosis		
	Dermanyssus gallinae	Dermanisosis	Acarozis		
In Dogs:	Trichodectes canis	Trihodectosis	Entomosis		
	Rhipicephalus turanicus	Ripicephalosis	Acarozis		
	Ctenocephalides canis	Ctenocephalidosis	Entomosis		
In the case of the white mouse:	Allodermanyssus sunguineus	Allodermanysosis	Acarozis		
	Laelaps echidninus	Laylapsosis	Acarozis		
In the Guinea pig:	Gliricola porcelli	Clericolosis	Entomosis		
In Rabbit:	Rhipicephalus bursa	Ripicephalosis	Acarozis		
On livestock farms:	Musca domestica	•	Entomosis		
	Stomoxys calcitrans		Entomosis		
	Lyperosia titillans		Entomosis		

MIDDLE EUROPEAN SCIENTIFIC BULLETIN

https://cejsr.academicjournal.io

Among agricultural and laboratory animals, it was noticed that such parasitic diseases as bovicolosis, linognathosis, ripicephalosis, and hyalommosis are very common.

It is noted that pathogens of entomotic diseases (bovicolas, trichodectes, and others) are present in the bodies of animals throughout the year, mainly in November-May; pathogens of ixodidosis (ixodid ticks) are more common in late spring and summer months; nymphal forms are also observed in the winter months; and the alveonase mite mainly causes alveonase epizootics in winter (Table 2).

Infection of cattle with dominant ectoparasites by months

Table 2

S/n	The name of the found parasites		Extensive damage by month, %										
			Π	Ш	IV	V	VI	VII	VIII	IX	X	XI	XII
1.	Bovicola bovis	65	74	87	<i>9</i> 8	91	22	18	15	21	25	28	45
2.	Rhipicephalus bursa	0	0	14	23	68	87	94	90	53	13	3	0
3.	Hyalomma anatolicum	0	0	12	20	65	80	90	80	51	10	0	0

The reasons for the spread of the dominant ectoparasite Bovicola bovis, the most common among cattle, in these months are high air humidity, the dense keeping of animals in enclosed spaces, the relatively low resistance of animals, and the inadequate zoohygienic requirements of premises in which animals are kept. As observed, the food ration does not meet the regulatory requirements, which, in our opinion, are associated with factors such as the level of provision.

It was revealed that the degree of extensive infection with these dominant ectoparasites, common among cattle, is similar to that in sheep (Table 3).

Seasonal prevalence of dominant ectoparasites among cattle

S/n	The name of the found parasites	Extensive damage by month, %					
		Winter	Spring	Summer	Autumn		
1.	Bovicola bovis	61,3	92.0	18.3	24.6		
2.	Rhipicephalus bursa	0	35	90.3	22.7		
3.	Hyalomma anatolicum	0	32.3	83.3	20.3		

Table 3

Thus, among large and small horned animals, the dominant species of ectoparasites belonging to the genera Bovicola, Rhipicephalus, Hyalomma, and Ctenocephalidae and the endoparasites belonging to the genera Hypoderma, Psoroptes, and Oestrus were identified. It has been established that representatives of the genus Bovicola are most common in winter and spring, while ticks of the genera Rhipicephalus and Hyalomma are most common in summer.

CONCLUSIONS

- 1. In the conditions of livestock farms in Samarkand, Kashkadarya, Navoi, and Andijan regions, 41 species of ecto- and endoparasites and parasitic diseases were found to be widespread among agricultural and laboratory animals.
- 2. Among farm animals, ecto- and endoparasites: Bovicola bovis, B. ovis, B. caprae, Ctenocephalides caprae, Ct. ovis, Oestrus ovis, Hyalomma anatolicum, H. plumbeum, Rhipicephalus bursa, and among laboratory animals Allodermanyssus sunguineus and Rh. bursa are the main species and were found to be widespread as dominant species.
- 3. In the winter and spring months (maximum 61-91%), and in the summer and autumn months (up to 18-24% minimum), Hyalomma anatolicum, H. plumbeum, and ticks Rhipicephalus bursa, it was noted that more are in the summer months (83-90%), and a minimum of 20-35% in the

https://cejsr.academicjournal.io

spring and autumn months, and the endoparasite Hypoderma bovis is more common in the summer months (83-90%).

List of used literature

- 1. Akbaev R.M., Pugovkina N.V. "Bovikolez of cattle in livestock farms of the Moscow region." // journal "Veterinaty", Ed. "Logos Press" (Moscow),- 2017.- № 1,- p. 10-13.
- 2. Pulatov F.S., Ismoilov A.Sh., Rakhimov M.Yu., Abdullaeva D.O., Sayfiddinov B.F., Ruzimuradov A. "Fauna and ecology of zooparasites in zoobiocenoses", Turkish Journal of Physiotherapy and Rehabilitation; 32(2).
- 3. ISSN 2651-4451 | e-ISSN 2651-446X www.turkjphysiotherrehabil.org
- 4. Pulatov F.S., Rakhimov M.Yu. Ismoilov A.Sh., Boltaev D.M., Sayfiddinov B.F. Ecogenesis of ectoparasites of agricultural animals. Eurasian Medical Research Periodical, 27 March. 2022, volume 6, pp. 165-167, ISSN 2795-7624. https://geniusjournals.org
- 5. Pulatov F.S., Djalolov A.A., Saifiddinov K.F. The Spread of bovicolosis in sheep. Journal Impact Factor: 5.722. Central asian journal of medical and natural sciences, Volume: 03 Issue: 05/ Sep-Oct 2022, ISSN: 2660-4159. SJIF 2022.
- 6. Pulatov F.S., Rakhimov M.Yu., Ismoilov A.Sh., Boltaev D.M., Kamalova A.I., Djalolov A.A., "Fauna and phenoecology of zooparazites", Annals of forest research Scopus journal 65 (1), page: 854-863, 2022. https://www.e-afr.org/.
- 7. Пулотов, Ф. С., Рахимов, М. Ю., & Исламов, F. П. (2022). ALPHA-SHAKTI ПРЕПАРАТИНИНГАКАРИЦИДЛИК САМАРАДОРЛИГИ. Gospodarka i Innowacje., 28, 133-137.
- 8. Pulatov, F. S., Jalolov, A. A., & Saifiddinov, K. F. (2022). The Spread of Bovicolosis in Sheep. Central Asian Journal of Medical and Natural Science, 3(5), 239-241.
- 9. Boltaev, D. M., & Pulotov, F. S. (2022). Epizootology of Goat Fur Eaters. Web of Scholars: Multidimensional Research Journal, 1(4), 121-124.
- 10. Pulatov, F. S., Rakhimov, M. Y., Sh, I. A., Boltaev, D. M., & Saifiddinov, B. F. (2022). Ecogenesis of ectoparasites of agricultural animals. Eurasian Medical Research Periodical, 6, 165-167.